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Abstract

Information Extraction (IE) is the process of identifyinget of pre-defined rele-
vant items in text documents. We investigate the applioatfdVlachine Learning
classification techniques to the problem of Informationr&stion. In particular
we use Support Vector Machines and several different feegats to build a set
of classifiers for Information Extraction (IE). We show thlais approach is com-
petitive with current state-of-the-art Information Exdtian algorithms based on
specialized learning algorithms. We investigate the difiécomponents of our IE
system, such as learning algorithm, feature-set and iosts@lection, and com-
pare how much each component contributes to performancealsantroduce
a new multi-level classification technique for improving ttecall of IE systems.
We show that this can give significant improvement in the greneince of our
IE system and gives a system with both high precision and tagall. Our sys-
tem (ELIE) is an adaptive Information Extraction algorithm that uaew/o-level
boundary classification approach to learningieEfirst classifies every document
position as the start of a fragment to be extracted, the eadrafjment, or neither.
This first level of extraction typically has high precisiontlmediocre recall. To
increase recall, we employ a second level of classificatiwsitions near those
positions extracted at the first level are classified by ars@pair of classifiers that
are biased for high recall. For example, the positions “dgiveaam” from each ex-
tracted start position are classified in order to find the driilegiven fragment.
Our results on several benchmark corpora indicate that Bften outperforms
state-of-the-art competitors.



Chapter 1

Introduction

1.1 Motivation

There are a huge number of electronic documents in the wodalyt Many are
available on the world wide web while many others exist withrganizations.
These documents are often in unstructured or semi-steatformat. Email and
text documents often have little structure or some arlyitsenucture that is defined
by the document’s author.

Information Extraction (IE) is the process of identifyinget of pre-defined
relevant items in text documents.

IE has many applications. It can improve information retleand text mining
by identifying entities in free text. It can extract strued data from unstructured
text to create structured databases. It can be used to aitallysadd semantic
annotation to web-pages.

It enables structured data to be built from unstructureckarisstructured text
sources. It can be used to create a structured databasetisimatured text. For
example, a company may receive hundreds of resumes by exmaildotential
employees. These will all be in some kind of structured taixtarmat but this
format will vary from resume to resume. It is difficult to coane and form com-
plex queries over all the resumes in their textual form. kEhteques can be used
to extract the relevant items from the text documents andtcoct a relational
database from the data. This allows for complex queries toolbstructed over



all the resumes e.g. “Find me all the applicants that haveertt@an 3 years ex-
perience, are under the age of 25 and have listed java-pnogirsg as a skill”.
It would be very difficult to perform such a search using keyavmatching over
the raw text of the resumes. IE can automatically identify extract the various
elements of the text that we are interested in.

The huge number of documents on the world-wide-web exhiidar prob-
lems when it comes to formulating complex queries. Curreatch systems such
as Google excel at retrieving documents according to whatiteds they match
but they do not allow for more complex queries. Current dearethods see web
documents as sequences of tokens. Searching consists diingatiocuments
which contain the same tokens as the query and then rankémg #itcording to
some ranking metric such as the number of links that poinbh&mt The se-
mantic web initiative aims to address this problem by addiegantic mark-up
to documents when they are created. This semantic infoomatill facilitate
more complex searching of documents on the web. Howeverastemwajority of
documents on the web contain no semantic mark-up. |IE candxtosdentify
semantic entities in text and web documents. |E can faiglifae semantic web
by automating the process of adding semantic mark-up tordents.

Information extraction can be done manually by having areexpser create
rules that will extract the desired entities. This is a difficexpensive and time-
consuming process.

We are interested in Automated Information Extraction. ufégl.1 shows
what we mean by automated IE. A human annotator annotatespdes of the
entities that we want to extract. These annotated docunaeatssed as examples
for a Machine Learning algorithm. It uses these labelledlas to learn a set
of rules that can be used to extract the entities. Thus tleeabthe human is
reduced to labelling example entities in documents ratier having to construct
complex sets of rules. The complexity of identifying the thredes is left to the
learning algorithm.
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Figure 1.1: Automated Information Extraction

1.2 Contributions

Numerous IE systems based on Machine Learning techniquedlean proposed
recently. Many of these algorithms are “monolithic” in thense that there is no
clean separation between the learning algorithm and therésaused for learning.
Furthermore, many of the proposed algorithms effectivelguent some aspects
of Machine Learning rather than exploit existing Machinetreng algorithms.
It is not obvious which aspects of each system contributéstparformance and
how much each contributes.

We investigate how relatively “standard” Machine Learnteghniques can
be applied to Information Extraction. We adopt the stand#étdas classifica-
tion” formalization [20, 12], in which IE becomes the taskabhssifying every
document position as either the start of a field to extraetetid of a field, or nei-
ther. We then break down the different components of thieesysnd investigate
how each component contributes to and affects the perfareawe investigate

4



attribute filtering, the effect of different feature-setedahe effect of choice of
learning algorithm. We investigate the problems causedaty uinbalance on the
IE task and investigate different instance-undersamgiragegies.

Based on this initial system, we then describe enhancenethss basic ap-
proach that give higher performance on a variety of benchrtartasks. Our
enhancements consist of combining the predictions of tw®dfeclassifiers, one
set with high precision and one with high recall.

The intuition behind this approach is as follows: We assumeebtase classi-
fiers have high precision and predict very few false positii® extract a fragment
we need to identify both its start and end tags. If the basssifiar predicts one
tag (start or end) but not the other we assume that it is doiWée use this predic-
tion as a guide to a second classifier to try and identify thesimg complementary
tag.

We make three contributions. First, we show that the use afffathe-shelf
support vector machine implementation is competitive vettinrent IE systems
based on specialized learning algorithms. Second we igetstthe effects of
each component of the system (features, instances, |¢@méne overall perfor-
mance. Third, we introduce a novel multi-level boundargsification approach
and demonstrate that this new approach outperforms cigystgms.

1.3 Organization

The rest of this thesis proceeds as follows. Chapter 2 descsome background
in the area of Machine Learning and applying it to text. Italdses some of the
other state of the art IE systems.

Chapter 3 describes the standard benchmark datasetser@tramonly used
to evaluate IE tasks. We describe each of the datasets usedls@/discuss the
issue of how to evaluate an IE system. We describe some othtbricemings
of how previous systems have been evaluated and discusshsysiems should
correctly be evaluated. We evaluate our own system usingseceative method-
ology for comparison to other IE systems and we describenieifiodology here.

Chapter 4 describes our basic approach that treats |IE aga ttkssification
task. This approach uses a generic Machine Learning impitatien and a fea-
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ture representation that represents the relational nafuitee |IE task. We show
that this approach is competitive with other state of thelarsystems that use
specialized learning algorithms.

In chapter 5 we delve into this system further and investigdtich parts of it
contribute to performance. We investigate the effect oiouer features-sets that
our IE system uses. We investigate the effect of varying ¢laenling algorithm.
We also investigate the effect of filtering the attributesxirour representation.

In chapter 6 we investigate the effect of instance filteringoar IE system.
Because we are using SVMs for learning we only need the instatihat make up
the support vectors for learning. Our representation tegué large number of in-
stances but in fact we can filter the majority of them withaghgicantly affecting
performance. We investigate two approaches to filteringtreginstances. The
first selects random negative instances for filtering. Tleise approach filters
instances in a more focused manner. It filters negativenostathat contain to-
kens that are unlikely to occur in the positive instancessehinstances are also
unlikely to be part of the support vectors.

Chapter 7 extends the IE system that we have developed imgbeging chap-
ters. It adds a second level of classifiers. This second Evelassifiers is de-
signed to have high recall. It is combined with the first setlagsifiers which
have high precision and it uses their predictions to filtepivn predictions. This
produces a new set of predictions that have higher recathintain high preci-
sion. We show experimentally that this approach gives Bt improvements
in performance.

Chapter 8 analyzes and discusses our IE system’s perfoentanthe Pascal
challenge, a recent challenge task for Information Eximact

Chapter 9 further generalizes our two-level approach addesdes the prob-
lem of representing relational information between défdrfields. It adds a third
level of classifiers. This third level aims to use relatioaseen fields to improve
performance. This level uses the predictions for all théedght fields to add
features to the representation that encode relationstefvgelen fields and then
relearns the models using these new features.

Chapter 10 presents our conclusions and suggests diredétiofuture work.



Chapter 2

Background and Related Work

2.1 Overview

In this chapter we describe the work related to our researdibackground from
related fields.

We give an overview of Machine Learning and describe somehiad_earn-
ing algorithms. We describe previous work in Text Classiftzaand how the text
classification problem is represented for Machine Learning

We describe the Support Vector Machines algorithm in datadlin particular
we discuss Support Minimal Optimization (SMO). SMO is spézation of the
SVM algorithm which we use for learning the classifiers that i system uses.
We describe the operation of several other well-known I©@digms.

2.2 Machine Learning

In this section we present an overview of the Machine Learajpproach to auto-
matically building classifiers. We describe the Machinerbégy algorithms that
we used for our experiments.



2.2.1 The Learning Process

Machine Learning involves learning from examples. It usegtaof training ex-
amples to extrapolate and learn patterns, and to learnlabores between the
features that are used to represent each example and socifeedpsoncept. Ma-
chine Learning has been widely used for document classdicand many other
applications. Document classification is of particulaemest to us as many of
the techniques can be adapted to IE. The Machine Learningpagp to docu-
ment classification takes a set of pre-classified examplgsises these to induce
a model which can be used to classify future instances. Tdesifler model is
automatically induced by examination of the training exeapThe human effort
in this process is in assembling the labelled examples aodsthg a representa-
tion for the training examples. A human must initially dexidhat features will
be used to describe the training examples, and represetrathing documents
with respect to these features.

When using Machine Learning algorithms, we first identifg toncept to be
learned. This concept is what we want the classifier to betaltéassify; in our
case this is whether a token is a start or an end of a field.

The type of learning we are interested in is classificati@rimg. In this
learning scheme, the learner takes a set of labelled pssifital examples. The
learner is then expected to induce ways of classifying umsegamples based on
the pre-classified examples given. This form of learninguigesvised in that the
training examples are provided and labelled by a human egers

The training data is a set of instances. Each instance igesrample of the
concept to be learned. Instances are characterized by bagtlmites where each
attribute measures a certain aspect of the concept beicglies. Attributes can
be discrete or continuous. Continuous attributes reptesene numerical value
that can be measured. Discrete attributes assign theuagtitico membership of a
particular category.

Figure 2.1 shows an example Machine Learning dataset. Ttagatacontains
24 instances and 4 attributes. Each of the attributes isedesce. they can take
only certain pre-defined values. The attributes are:

1. Age of the patient.



Age Spectacle Pre Ast tear-pr-rt lenses
young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope  yes reduced none
young hypermetrope  yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope  no reduced none
pre-presbyopic  hypermetrope  no normal soft
pre-presbyopic hypermetrope  yes reduced none
pre-presbyopic hypermetrope  yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope  no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope  yes reduced none
presbyopic hypermetrope  yes normal none

Figure 2.1: Contact lens data: An example Machine Learrasg t

2. Spectacle prescription.
3. Whether the patient is Astigmatic.
4. The patient’s tear production rate.

The class to be predicted in this case is whether the patientd have hard con-
tact lenses, soft contact lenses or no contact lenses. Esteimce is an example of
a patient. Each patient is described in terms of the 4 ategand whether or not

9



they received contact lenses. The task of a Machine Leaaigayithm is to look
at the example instances and try to learn patterns that vedipt whether future
patients will need contact lenses based on the attributeesdbr that patient.

This task is a simple illustrative task. The example instgreontain all possi-
ble combinations of attributes and values, making it easyiearning algorithm
to learn rules that make predictions for future instancéss @iataset can be cov-
ered with a rule-set consisting of only nine rules.

This dataset is very simple in comparison to most Machinenieg tasks. It
has a small number of attributes and it has an example irstan@very possi-
ble attribute-value combination. The examples can be eavesith a small set
of rules. Our IE task is much more complex than this examplasdd. It gener-
ally consists of tens of thousands of instances and atésbut generally takes a
large set of rules to cover the entire dataset and the nunfilbeles and instances
that would be required to enumerate all possible attribatae combinations is
prohibitive.

There are many other well known datasets that are used toatgallachine
Learning research. These are collected in the UCI repgs[tof] and cover
many different tasks and are of varying complexity. Exarapielude predict-
ing whether a patient has breast-cancer, diabetes, hieadsg, hepatitis, thyroid-
disease, how a person votes and whether a person has a gdibdatieg.

2.2.2 Some Machine Learning Algorithms

In this section we describe some well known Machine Learaiggrithms. The

selection described are widely used and cover differeradepproaches to Ma-
chine Learning. Some of them are similar to approaches ugé¢ldeblE systems
that we describe in section 2.5. OneR is a simple approatisthaeful as a base-
line and gives an indication of the complexity of a task. NaBayes is a proba-
bilistic approach based on Bayes’ rule that is widely used&xt Classification.

ID3 is a decision tree induction approach. Winnow is dedigioe datasets with

large numbers of irrelevant attributes and is used by thevSgaosystem. Ripper

is a rule induction algorithm that is broadly similar to tléerindication algorithm

used by RPIER and (LP¥.

10



For each attribute
For each value of that attribute:
Make a rul e that assigns the nost frequent class of
this value to this val ue
calculate the error-rate of each rule.
Choose the rule with the snmallest error rate.

Figure 2.2: OneR: An algorithm for induction of one-levetigon trees

OneR is a simple learning algorithm for generating one ldeelsion trees. It
is one of the most basic of Machine Learning algorithms bgtlegen shown to
do remarkably well on many common Machine Learning datasets

OneR generates a set of rules that classify an example oestzased on a
single attribute. Each attribute generates a set of rules far each value of the
attribute. The error rate is evaluated for each attribuidss-set and the rule-set
with the lowest error rate is chosen. Figure 2.2 shows theRCalgorithm.

Despite its simplicity, OneR performs well on many clasatiign tasks. Holte
[23] showed that OneR does surprisingly well in comparisomény state of
the art algorithms on several commonly used datasets. Ihiaverage just a
few percent less accurate, but generates substantialptesirmodels and smaller
trees. OneR can be used as an approximation of the comptéxtiearning task.
If OneR performs well on a learning task it indicates thasihot a particularly
complex task as there is a lot of information in single attt@s and complex
combining of attributes is not necessary to learn the task.

ID3 [39] is an algorithm for top-down induction of decisiaés. In the re-
sulting decision tree, each node corresponds to an atidgach arc from the
node corresponds to a possible value of that attribute. Eathiescribes the ex-
pected value of the discrete attribute for an instance destiby the path from
the root node to that leaf.

Each node should be associated with the attribute that i mimsmative
among those not yet considered on the path from root to node nbtion of
entropy is used to measure how informative an attributeniparticular a measure
of Information Gain is used to choose the most informativetaite.

Figure 2.3 shows a simple decision tree induction algorigimilar to that
used by ID3. It uses a measure of Information Gain to choosehattribute to

11



Deci si onTr eel nduce(attri butes, i nstances):
Select an attribute to place at the root node
Make a branch for each possible val ue
if all instances have the sane classification: break
For each branch:

Deci si onTreel nduce(attri butes not used reaching this branch,
i nstances that actually reach this branch)

Figure 2.3: ID3: An algorithm for decision tree induction

split on. The Information Gain of each attribute is calcethand used to choose
the attribute with the highest Information Gain.

Another simple method is to use all attributes to calculag¢eprobability of an
instance belonging to a category based on the observeihgaiata. This tech-
nique is called Naive Bayes [32] and is based on Bayes’ rtileaiVely assumes
independence between attributes. Despite this assumN@&ine Bayes works
well in practice, particularly when used on datasets thae Hairly independent
attributes. Naive Bayes can rival or outperform more sdpaited algorithms on
many datasets and has been widely used for Text Classificatio

Winnow [33] is an algorithm that is designed to deal with &argumbers of
irrelevant attributes. It consists of a threshold and a $eteights for all the
attributes. For an instance, it predicts that it is a memibéhe positive class if
the sum of all the weights for the instance’s attributes éatgr than the threshold.
Learning consists of setting the attribute weights andslfjg them to minimize
error on the training set.

Ripper [14, 13] is a fast rule-learning algorithm. It leaanset of if-then rules.
The left hand side of each rule is a set of conditions and & hand side is
a classification. Ripper builds an initial set of rules andnttoptimizes them a
pre-defined number of times. It is a covering algorithm. lidsirules greedily,
one at a time. After a rule is constructed each example thabvsred by that
training algorithm is removed from the training set. Thisgess continues until
each example in the dataset is covered or until new rules &doigh error rate.
Each rule is just a conjunction of features.

12



2.2.3 Support Vector Machines

Support Vector Machine (SVM) [15, 7] is a Machine Learningalthm for bi-
nary classification. Given a set of example instances, easthrice labelled as
being a member of one class or the other, the SVM algorithmtifies a hyper-
plane that separates the two classes.

If each attribute is represented byttributes then each instance can be plotted
by a point in ann-dimensional space. The hyperplane separates the instance
in this space. For a two-dimensional space the hyperplaadire, for a three
dimensional space the hyperplane is a plane and so on foeth@jmensional
spaces.

SVMs create a maximum-margin hyperplane between two dabse lies in
a transformed input space. It tries to maximize the distahctsest examples to
the hyperplane (margin). The feature space is a non-lin@arfrom the original
input space, usually of much higher dimensionality thanathginal input space.
In this way, non-linear classifiers can be created. If theigg®no hyperplane that
can split the positive and negative examples, the soft mangithod will choose a
hyperplane that splits the examples as cleanly as possihlks still maximizing
the distance to the nearest cleanly split examples.

SVMs select a small number of important boundary instanwes £ach class
and attempts to find a function that linearly separates thmimportant aspect
of the SVM algorithm is the ability to seperate instanced #ra not linearly
seperable. The SVM algorithm transforms the instance spétieh may not be
linearly separable, to a new instance space where the slagsknearly separable.
They find the maximum margin hyperplane between two clagsgges this using
the kernel trick. The kernel trick uses a non-linear kermgiction to transform
the instances to another instance space where they ardyiseperable.

Figure 2.4 shows a simple two-dimensional hyperplane. iBxdkample each
instance has only two attributes (x and y), so we can plotiktances on a 2D
graph as shown. The task of the learning algorithm is to fingeetplane that can
separate the instances into the positive and negativeeslassa two-dimensional
space the hyperplane is a line. The example shows sevesbf@byperplanes
that can split these examples (the dashed lines). This deaifinearly sep-
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Figure 2.4: A hyperplane in two dimensions

arable in the original instance space, i.e. we can draw atliaeseparates the
instances. When this is not the case, SVM maps the instantmeanother higher
dimensional instance feature space where the instanchkseady separable. The
SVM algorithm finds the maximal margin hyperplane (the sbiid). The maxi-
mal margin hyperplane is the one that gives the greatestatepabetween classes
- itis as far from each class as it can be.

The instances that are closest to the hyperplane are chélesipport vectors.
There is at least one support vector for each class and ysualle. The sup-
port vectors are sufficient to define the maximum margin hylpee, i.e. we can
construct the maximum margin hyperplane given only the stpgectors. The
instances that are not in the set of support vectors can leéedeabr ignored with-
out having any effect on the position or angle of the hypemldn the example
of figure 2.4 the examples are linearly separable. If theynatehe SVM algo-
rithm can map them into another higher dimensional spaceerthey are linearly
separable (see figure 2.5).

SVM is currently one of the best learning algorithms for TE€kassification
[28] and has been successfully applied in many domains.

We use the Support Minimal Optimization (SMO) [38] algonth SMO is
an SVM algorithm that is particularly suited for linear SVidsd sparse datasets.
It exploits the sparseness of the data to improve performantreplaces the
guadratic programming inner loop of the SVM algorithm witheuristic analytic
quadratic programming step. It breaks down the quadratigramming problem
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Figure 2.5: SVMs can map instances that are not linearlyrabgeinto another
instance space where they are separable

into a series of smaller quadratic programming problemsaaegiery step chooses
to solve the smallest possible optimization problem.

2.3 Machine Learning and Text

Automatic Text Classification is the task of automaticakgigning a document
to one of a set of categories [44].

A typical application involves assigning documents to a-geéned set of
categories based on the topic of the document. An exampl&cbfan experiment
is given in [27]. Data was collected from 20 newsgroups wiBld@ documents
collected from each. The task of the classifier was to autcalbt recognize
which newsgroup a document came from. A Naive Bayes classifigieved an
average accuracy of 89% on this task.

There has been a large amount of work in the application otihed_earning
techniques to Text Classification (TC). The CORA system [84] hierarchical
catalogue of computer science research papers. Docunergatamatically spi-
dered from the web and Machine Learning techniques are osessign the docu-
ment a place in the subject hierarchy. YahooPlanet [35] te=¥ahoo! hierarchy
as a basis for automatic document categorization and apjdliéehine Learning
techniques to the task of automatically assigning web decusto a category
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within this hierarchy. Chen and Dumais [10] describe a sydteat automatically
classifies search results into an existing category streicachine Learning ap-
proaches to text categorization have been successfullyedpp the problem of
spam filtering [43]. Spam filtering is the task of automaticaécognizing and
filtering spam email. Using Machine Learning for spam filhgris now a popu-
lar approach to the problem of automatic spam filtering. Thaenerbird email
client uses a Naive Bayes classifier to filter junk mail. Afgphaail client uses
Latent Semantic Analysis [16] for spam filtering.

When applying Machine Learning to text, the text is usuadlyresented using
the bag-of-words vector space model. Every token that sdouall the training
documents is a feature for the learner. Each document issepted as a binary
vector of all these features.

TC and IE have some similarities but they differ in importargtys. When
using ML for TC, the task is to classify entire documents icaitegories. With IE,
we are not classifying entire documents into classes. ddstee seek to identify
fragments of documents that are of interest. With TC a sidgleument is an
example of a class but with [E a document may contain exanopks/eral classes
of interest. We are classifying the individual tokens of awoent rather than the
documents.

TC consists of a single classification task. Each model fless& document
as being a member of a class or not. IE consists of severaifatasion tasks: for
each token we must identify whether it is the start of a field ahether it is the
end of a field. We must then combine the predictions of standsesds to decide
which combinations are fragments that should be extracted.

IE is a sequential task. With TC there it is assumed that tisane sequential
relationship between the different documents being diadsiWith IE there is a
strong relationship between each token being classifiedranprevious and next
token being classified. We must extend the standard TC reqesons to take
account of this sequential information. IE can be thougtasofext Classification
at the token level with the additional need to represent esecglinformation be-
tween tokens. In traditional classification tasks such astf€ classification of
one object does not affect the classification of anotherr@deein classification
for IE, the class of one token depends on and affects the afassarby tokens.
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The large body of work in using ML for TC gives us a startingrgon using
ML for IE. We can reuse the learning algorithms and repregents that have
been widely used in the TC domain. We use similar repredgentafor our in-
stances but extend them to represent the sequential infiormizetween tokens.
Existing IE systems are often monolithic systems that useis bwn algorithms
and representations for the IE task rather than taking @dganof the existing
work in TC and ML. We can reuse much of the work that has beee @oasing
ML for TC and apply it to IE with suitable modification.

2.4 The Semantic Web

The semantic web [4] is an extension to existing web starsdidnat enables se-
mantic information to be associated with web documents. dureent www is
designed for humans. It is not designed to be easily undetatde by machines.
The aim of the semantic web is to make web documents easiendohines to
understand. It enables machine-readable informationtaheumeaning of docu-
ments to be added to them.

For example, consider a page listing all the members of theaBment of
Computer Science at a University. Current search enginesdwreat it as a list
of tokens with no information about what each of the tokenamse The semantic
web enables us to encode extra meaning in the document &lgauetaning of the
document and its various entities. For example, it wouldénas to identify each
entity listed as a person, and more specifically a computensst. Each person
might have a name, web-site, email address and researcéstsassociated with
them. Using the semantic web enables machines to idengfgdahcepts within a
document. Suppose we wish to search for all computer sstemtiirrently work-
ing in American universities in the area of artificial intgnce. Such precise
queries are not possible using current search methodd. wieal pages have se-
mantic information associated with them this kind of queegdimes easy.

The vast majority of current web pages have no semanticrirdton asso-
ciated with them. One of the barriers to the adoption of theasdic web is the
difficulty in adding semantic annotations to large amouritext. The ability to
automatically add semantic annotations would be of hugefiien adoption of
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the semantic web [11]. IE is one process that can be used tsthapthe seman-
tic web by automatically identifying entities in existinggety documents and using
this information to add semantic annotations to the docusnen

2.5 Information Extraction

In this section we discuss and compare some of the more penminadaptive IE
algorithms. These are the systems that we will compare oaramainst and are
considered the state of the art in IE. They are the systemesilis the IE survey
paper by Lavellet al.[31].

2.5.1 Rapier

Rapier [8] uses inductive logic programming techniquesiscaler rules for ex-
tracting fields from documents. It does not try to identifgrstind end tags sep-
arately, but learns to identify relevant strings in theitiry. Rapier performs
specific-to-general bottom-up search by starting with tlestspecific rule for
each positive training example and repeatedly trying toegaize these rules to
cover more positive examples. Rapier uses as its featueetoktens, part-of-
speech information and some semantic class information.

Rapier uses a different representation to the other IE systeRather than
marking occurrences of fields in the text with an XML-like &yx it takes a tem-
plate filling approach. Associated with each text is a tetegtantaining the fields
for that text. This approach does not distinguish betwe#ardint occurrences of
a field and doesn’t allow for ambiguous text. For example,bagdvertisement
might have a template that contains ‘platform:windows’.isTépproach doesn’t
allow us to represent the occurrence of the word ‘windowshimmtext in contexts
other than platform. The task of the IE algorithm is to fill teenplate rather than
to identify all occurrences of a field in the text.

Rapier’s learning algorithm consists of specific to gengealkch. It starts with
the most specific rule-set for all the training examples adgeds by replacing
sets of rules with more general ones. The rules that Ramendeconsist of three
parts: a pre-filler, a post-filler and a filler. The pre-filleatohes the text before
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the field, the post-filler matches the text after the field dredfiller matches the
actual field. Each pattern is a sequence of elements thatdhate matched. As
features, it uses only the actual tokens and their POS tamsh€ initial rule-set
the most specific rule for each example is created using thid aod POS tags
for the filler and its complete context. The initial rule-geas specific as possible,
consisting of a filler pattern of the exact tokens for thedjl&epre-filler pattern of
all tokens that precede the filler in the document and a pltest{iattern of all the
words that follow the filler in the document. Rapier then meds to generalize
these rules by selecting pairs of rules and generalizingn thy getting the least
general generalization of each pair of rules. To considgrassible pre- and post-
filler patterns would be prohibitive so Rapier starts getieggpre- and post-fillers
from the filler outwards. It maintains a list of tlkdbest rules and repeatedly adds
generalizations of the pre- and post-filler seed rules, imgrlbutward from the
filler. The rules are ordered by Information Gain and weigHig the size of the
rule, with small rules being preferred. When a rule gives ad predictions on
the training examples it is added to the final rule-base oapdgany less general
rules that it renders superfluous.

2.5.2 Boosted Wrapper Induction

Boosted Wrapper Induction (BWI) [20] learns a large numbiesimple wrap-
per patterns, and combines them using boosting. BWI leaparate models
for identifying start and end tags and then uses a histogfanaiaing fragment
lengths to estimate the accuracy of pairing a given stareaddag. BWI learns to
identify start and end tags using a form of specific-to-gahsgarch. BWI's fea-
tures consist of the actual tokens, supplemented by a nuohbethographic gen-
eralizations (alphabetic, capitalized, alphanumerwgelecase, numeric, punctu-
ation), as well as a modest amount of lexical knowledge (eofigirst and last
names).

Boosting is a technique for improving the performance ofrie®y algorithms
by repeatedly learning from the training examples, each tihanging the weights
associated with individual examples. Each round of boggiays more attention
to examples that were difficult for the previous round.
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Boosting works by combining multiple models. Each of thesedeis can
make a prediction for a particular instance and the pramhstof all the models
are combined according to how accurate each model was omatinény data.
Each model is built based on the previous model and focusesstences that
were difficult for the previous model.

Other systems attempt to learn rules that cover as many dgarap possi-
ble. BWI learns rules that are specific and have high pretiaial limited recall
but learns lots of them. This “weak” learning algorithm igthimproved using
boosting. It is repeatedly applied to the training set anctheane the weights
associated with each example are changed to emphasize lesaompwhich the
learner has done poorly on previous steps.

BWI treats IE as a token classification task, where the task ¢gassify each
token as being a boundary that marks the beginning or end efd fit builds
up a set of patterns from the training set. It builds two séfsatterns - one for
detecting starts of boundaries and one for detecting entt®wfidaries. When
starts and ends are identified, a fragment is extracted lmastiek probability of a
fragment of that length occurring.

2.5.3 (LPY

(LP)? [12] learns symbolic rules for identifying start and endstagike BWI, it
identifies the starts and ends of fields separately. In aidit token and ortho-
graphic features, (LP)uses some shallow linguistic information such as morpho-
logical and part-of-speech information. It also uses a-dseéined dictionary or
gazetteer. Its learning algorithm is a covering algorithhiolu starts with specific
rules and tries to generalize them to cover as many posikamples as possible.
This process is supplemented by learning correction raksshift predicted tags
in order to correct some errors that the learner makes.

It operates in two steps. The first step uses a simple botfwgeneralization
process to learn a set of tagging rules. The second stefslaaset of correction
rules that correct errors made by the tagging rules.

The first step involves learning a set of tagging rules. Eadh attempts to
identify either the start or the end of a fragment, rathenttrging to recognize
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whole fragments at once. (LP)akes a classification approach to IE with each
start or end of a fragment being a positive example and adiratistances being
negative examples.

It proceeds as follows: for each positive example: 1) buildratial rule, 2)
generalize the rule, 3) keep thkébest generalizations of the rule and discard the
rest.

The generalization process consists of taking the speaitialirule and try-
ing to generalize it with some information gained from staINLP analysis. For
example ‘at 3 pm’ might be generalized to ‘at [digit] pm’. $hiould be further
generalized to ‘at [digit] [timeid]’. Once (LP)has generated all the generaliza-
tions, the next step is to select the best generalizatiomsh [generalization is
tested on the training corpus. Tkéest generalizations are kept that 1) have bet-
ter accuracy, 2) cover more positive examples, 3) coveemifft parts of the input
and 4) have an error rate that is less than some specifiedhthdesRules that are
not discarded at this step are added to a best rules poaniest that are covered
by a rule in the best rules pool are removed from the positaegles. Thus once
an instance has been covered by a rule, it is no longer usedléinduction.

Once the initial set of tagging rules has been generated? (ries to learn
contextual rules. The initial rule-set tends to have higécgion but low re-
call. This phase attempts to increase recall by learning asteetermed contextual
rules. Some of the discarded rules are retrieved and? (a@¢mpts to constrain
their application to make them reliable. This constraindesived by exploiting
interdependencies among tags. The first rule pool was debyeassuming that
all tags were independent. This is not always the case. Feongbe, if we identify
anstime then aretimemay follow. Some rules that were previously discarded are
re-introduced with constraints if adding the constrainpioves the rules perfor-
mance. For example, A rule that identifies a starttiihemight only apply if an
end ofstimehas already been identified.

(LP)? also attempts to induce correction rules. These rules ptteniearn to
correct mistakes. For example, If the system extractedr8 tre fragment ‘at 3
pm’, the system tries to learn a correction rule that woulidt ¢fre end boundary
to the correct token. These correction rules learn to dhéffgosition of tags that
have already been identified and they are learned using the peocess as the
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tagging rules.

The use of contextual rules means that @.R)strong for related fields as it
can exploit the dependence between them. {sRgarning algorithm is fairly
simple. It seems likely that it performance comes from thiéitglio generalize
using NLP features and the ability to use information abdhbéntags to exploit
relationships between tags.

2.5.4 SNoW-IE

SNoW [41] is a relational learning algorithm that is speadiliig tailored towards
large-scale learning tasks such as IE. SNoW-IE [42] is anykiesn based on
SNoW. It identifies fragments in their entirety rather thaparately identifying
start and end tags. It uses token, orthographic, POS anchserfeatures.

SNoW-IE learns in two stages. The first stage is a filteringestd he set of all
possible fragments is filtered to a small number. The aim fités out irrelevant
negative instances without filtering positive instancedrayment is filtered if it
matches one of 2 criteria: 1) it doesn’t contain a featureith@ommon in the pos-
itive examples or 2) the fragment’s confidence value is bel@m&rtain threshold.
The first stage has high recall, while the second stage haphégision.

SNoW-IE uses relational learning for IE. Specifically, ieasa restricted form
of Inductive Logic Programming (ILP). This system does metat identifying
starts and ends as separate token classification tasksrdtedfragments in their
entirety. It proceeds by identifying all candidate fragitsein a document. Each
of these fragments is represented using a set of definedrdsatireatures are
extracted from three regions: the fragment itself, befbesftagment and after the
fragment.

The second stage involves picking the correct fragments tite fragments
that remain. The second stage uses an enhanced represetaatnprove perfor-
mance. The remaining fragments are used to train a cladsifieach field.

2.5.5 Hidden Markov Models and Conditional Random Fields

A Hidden Markov Model (HMM) is a probabilistic finite statetamaton for mod-
elling sequential data. Each state omits tokens accoradisgme fixed distribu-
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tion. The transition between states also conforms to sored @istribution. When
using HMMs for IE, the states represent the fields to be etddad~or example,
there would be states for the start and end of each field aradeafst none of the
fields (background state). There are efficient algorithnngyémerating the most
likely state sequence for a given document. HMMs can be uselEfby deter-
mining the sequence of states that were most likely to hawergéed the entire
document, and then extracting the symbols associated atfig¢lds we wish to
extract.

Freitag and McCallum [21] describe an approach to using HNM$E. The
HMM models a generative process where a sequence of synsogésierated by
starting at some start state, generating the symbol ddeidiy that state and
transitioning to the next state. The process of generatgygrdol and transition-
ing to a new state is repeated until a final state is reachedoddated with each
possible set of states is a probability distribution ovéswambols in the vocabu-
lary and a probability distribution over a set of transidno the next state. These
probabilities are learned from the training date. A dynapragramming algo-
rithm called the Viterbi algorithm is used to find the moselik state sequence
given a HMM and a sequence of symbols. They generate indepértMMs for
each field to be extracted. Each model has two states - bagkgjstate and target
state. The target state produces the field that we wish taaxtr

One of the weaknesses of using HMMs for IE is that it is diffidol model
several different features for each token. As well as olisgrthat a particular
word occurred in the sequence, we may wish to observe thasiago capitalized
and that it was the start of a noun phrase. Representing éxérsefeatures for the
sequence is prohibitively difficult for HMMs.

Conditional Random Fields (CRFs) [29] are an approach thawdhe use
of arbitrary features in modelling the observed sequendeF<Cdefine a condi-
tional probability distribution over labelled sequencather than a joint distribu-
tion over pairs of labels and observation tokens. This altve model to include
arbitrary non-independent features as input.

To date CRFs haven't been extensively applied to the stdriabenchmark
datasets but they have been shown to perform well on otheadEst[37]. The
ability to combine several different features for each toked probabilistically
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model relationships between fields means that they are gvenyising algorithm
for IE.

2.6 Summary

This chapter covered background material and related ndseaWe gave an

overview of the Machine Learning process and describedaEVmachine Learn-

ing algorithms. We described how Machine Learning is usedéxt Classifica-

tion. We also described several state-of-the-art |IE aflyors: Boosted Wrapper
Induction, Rapier, (LP) SNoW-IE and Hidden Markov Models.
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Chapter 3

Datasets and Evaluation for
Information Extraction

There are several standard datasets that are used to evdlagierformance of
Automated Information Extraction systems. These datasetannotated by hu-
mans and the annotations are used as examples from whichsgatdin can learn
generalization rules. In this chapter we will describe thtadets used for evalua-
tion. We will also describe how we evaluate our system ancudis some of the
issues surrounding the evaluation of IE systems. It is diffiw compare each of
these systems directly for several reasons. First, thera aariety of “simple”
methodological differences (e.g., using a slightly diéf&r scoring mechanism)
[31]. More significantly, most of the literature reports pnésults for the system
in its entirety. It is difficult to know how much of the perfoemce differences
arise from different feature sets, how much from differezdrhing algorithms,
and how much from differences in experimental procedure.

3.1 The Annotation Process

Before a dataset can be used for Automated Information Extrait must be an-
notated. This involves identifying and marking all occuees of the pre-defined
fields that we wish to extract. All the datasets that we uses¥atuation are al-
ready annotated and have been used widely by the IE comnfonigyaluation.
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However the annotation process itself is complex and deseattention. All of
the standard datasets contain annotation errors and istamses. Annotation is
the most time-consuming part of any new IE task.

The process of annotating documents for Automated InfaondExtraction
involves identifying and marking the entities of interesttihe text. This can be
broken into several tasks. The first task is to identify whaities we are in-
terested in extracting. The second task is to decide on &geptation for the
annotations. The third is to manually identify and mark tloeusrence of the
entities in the document corpus.

3.1.1 Defining what is to be Extracted

The first task is to identify and define the entities that welr@erested in extract-
ing from the document collection. Many of the entities thr&t af interest may be
obvious from the dataset or from the particular extractaskt However it is im-
portant to define precisely what the entities are and whattdates membership
of a particular entity class. There may be some ambiguity &t the entity is
defined and how exactly to identify membership of the enfiégs. For example,
in the Seminar Announcements dataset one of the fields akesttéslocation
This fields denotes thiecationof a particular seminar. There is some ambiguity
in how locations are annotated however. If a document contains a stringasich
‘room B2.18, Computer Science Building, University Cokdgublin’, should we
annotate as cation‘room B2.18’, ‘Computer Science Building’, ‘room B2.18,
Computer Science Building’ or ‘room B2.18, Computer SceeBuilding, Uni-
versity College Dublin’?

Similarly, if we are to extract a time field, we must define wbanstitutes a
time. Precise examples of times include ‘3:00", ‘3pm’ ancp:&1.". We should
define whether we allow more general time descriptions satbealy afternoon’,
‘later today’ and ‘at the weekend’. Specifying in detail telds that are to be
extracted will result in higher annotation accuracy and Esbiguity in the an-
notations.
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3.1.2 Annotation Syntax and Representation

The second task is to decide on a representation for the a@tiorat We are con-
cerned with implicit relation extraction. The relationsween different fields are
implicit rather than explicit.

The simplest representation is to mark the start and endabf eecurrence
of a field in the text. Datasets are typically annotated féorimation Extraction
using a simple start and end syntafield-name>This is a field</field-name>

This is the approach to annotations that our system useshaldo the approach
that is used in most of the IE systems that we compare to artbiddtasets that
we use for evaluation.

This approach marks every occurrence of a field in a docunferdgther ap-
proach is the template mark-up approach. This approach seashy Rapier and
was used to annotate the original Job Postings corpus. Wighapproach ev-
ery document has an template associated with it which cosntdie values for
each field. The template representation doesn't allow fauoence of strings
that match a target field in contexts outside of the targeddielAs an example
consider a job posting that has ‘windows’ as a requptdform The template
associated with this job posting will specify ‘windows’ &&platform However
if the token ‘windows’ occurs in the document in contextsestthanplatform
this approach cannot represent that extra information.uktrassume that all oc-
currences of the token ‘windows’ in the document are exampfeheplatform
field.

These methods of annotation are limited in that they dolotalis to represent
different forms of the same entity or relationships betwestities. For example,
if a document haspeakes ‘Professor Sara Kiesler’, ‘Prof. Kiesler’, ‘Woody
Vaskula’, ‘Vaskula’ we cannot represent the fact that th& fiwo strings refer to
the same entity and the third and fourth refer to the saméyenmltiich is different
to that referred to by the first two.

Figure 3.1 shows an example of the standard approach toatimorothat is
used for the benchmark IE datasets. It also gives an examplslaghtly richer
annotation scheme that allows us to associate annotatitimemtities.

The lack of richness in the standard annotation schema gse$o problems
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1. Standard approach to representation

Seminar: On evaluation of Information Extraction Systems
Speakers: <speaker>J. Doe<speaker> and <speaker>J. Bloggs</speaker>
Time: </stime>3:00 p.m</stime>

There will be a seminar by <speaker>John Doe</speaker> and <speaker>Jane Bloggs<speaker> at <stime>3pm</
stime> in <location=room 101</location=. At <stime>3</stime>, <speaker>Jane<speaker> will speak followed by
<speaker>John<speaker> at 3:30.

2. Representing entities

Seminar: On evaluation of Information Extraction Systems
Speakers: <speaker id=1>J. Doe</speaker> and <speaker id=2>J. Bloggs</speaker>
Time: <stime id=1>3;00 p.m</stime>

There will be a seminar by <speaker id=1>John Doe</speaker> and <speaker id=2>Jane Bloggs<speaker> at <stime
id=1>3pm</stime= in <location id=1>room 101</lo n>. At <stime id=1>3</stime>, <speaker id=2>Jane</speaker>
will speak followed by <speaker id=1>John</speaker> at 3:30.

Figure 3.1: Approaches to annotation for Automated InfdromeExtraction

when it come to evaluating IE systems. Using the second rdethannotation
would allow us to perform a more correct form of evaluatione Will discuss
these problems in more detail in section 3.3.

3.1.3 Annotating the Documents

The outcome of the processes described in the previous tetimse is a set of

annotation guidelines that are used to annotate the dodsrimethe dataset. Even
with concise and well defined guidelines annotation is a toresuming and error
prone process. Human annotators can become tired and lnsenttation when

faced with a large annotation task. Document annotatioriesli@us process and
it is difficult for an annotator to completely avoid makingas.

There are some annotations that will not fall within the aation guidelines
and on which humans may disagree. One approach to this pmabléo mark
these annotations as optional or unsure. This is the apprtaéen in the MUC
named entity recognition annotation scheme. This resaltaany spurious an-
notations as it allows the annotator to opt out of making asil@e and annotate
fragments that have only a tenuous connection to a field asided in the anno-
tation guidelines.

Another approach is to have several annotators with oveirigpsets of docu-
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ments to annotate. If each document is annotated indeptyntgriwo people we
can assign extra annotators to documents where there vaageksnent between
the original two annotators. The level of agreement betveggrotators can serve
as a useful measure of how well defined the annotation taskirger-annotated
agreement is below a certain threshold, then the task majtodx reviewed and
better defined.

3.2 Information Extraction Datasets

There are several benchmark datasets that are commonlyfarsédormation
Extraction. Each of these corpora were annotated by diftarelependent re-
searchers for evaluating their own particular system. thtauh to these datasets,
the Pascal Challenge dataset is a new dataset for IE evaluadie describe the
Pascal Challenge in a separate chapter (chapter 8) as idiffeednt methodology
and compared different systems.

We evaluate our system using these standard benchmarlketiathe Seminar
Announcements (SA) dataset [19], the Job Postings (Joltayeta[8] and the
Reuters Corporate Acquisitions (Reuters) dataset [18].

3.2.1 Seminar Announcements

The Seminar Announcements dataset consists of a set of 4&86Gemnouncing
seminars collected at Carnegie Mellon University. It is @ated for 4 fields:
speaker start-time §timg, end-time étime@ andlocation The stime etimeand
location fields may each occur several times in the Seminar Announceamnsl
in different forms but they all refer to a single entity foretparticular Seminar
Announcement. i.e. a seminar can only have stitae but this may occur several
times in the document in different forms. e.g. ‘2:30", ‘230p The speaker
field can have multiple values as there can be more thaspeakerat a seminar.
However this information is external and is not encoded énahnotation. In fact
it cannot be encoded in the current annotation scheme (geesk3.1).

Figure 3.2 shows an example Seminar Announcement. In thimpbe all four
fields are annotated. There are multipfeeakes for the seminar. This particu-
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<0.16.1.95.11.46.22.copetas+@GANDALF.CS.CMU.EDU (Catherine Copetas).0>

Type: cmu.cs.scs

Topic: APPLE COMPUTER TALK

Dates: 26-Jan-85

Time: =stime>12:00</stime> - <etime=1:30 PM</etime=

PostedBy: copetas+ on 16-Jan-95 at 11:46 from GANDALF.CS.CMU.EDU (Catherine Copetas)

Abstract:

<speaker>Kai-Fu Lee</speaker> and <speaker>Rick Shriner</speaker= from Apple Computer will give a
presentation on the Apple Core Technology group and the AdvancedTechnology Group on Thursday, January 26
from <stime>12:00</stime><etime>1:30 pm</etime= in<location=Wean 4625</ocalion=, They will bring some of
the latest Apple technologiesin communications, telephony, multimedia, and speech. Rick and Kai-Fu invite
interested grads and undergrads to attend this informaldemonstration and discussion. Graduate students
interested in potential job opportunities are particularly encouraged to attend. Pizza will be served.

Figure 3.2: An example Seminar Announcement

| Field |occurrences Examples

speaker 759 Professor Sara Kiesler, Woody Vaskula, Vaskula
stime 984 12:00 PM, noon, 5pm
etime 435 1:30 PM, 1:30 p.m, 5pm

locatio 645 room 207, Student Activities Center, Baker Hall 355

Figure 3.3: Details of the Seminar Announcement dataset

lar example has very little structure but some of the otheudwents are more
structured. The Seminar Announcements are all free textemras email and
are thus generally unstructured but in some cases the aodsocomposed the
email in some structured form. This structure is dependerthe author and is
not consistent across documents.

Figure 3.3 show details of field occurrences and examples fhee Seminar
Announcement dataset. Thpeakelis the name of the person giving the seminar.
Thelocationis where the seminar will take place. Themefield andetimeare
the time the seminar will start and end respectively. $heakeffield is a multi-
valued field while the others are single-valued. The mostraomfield isstime
while etime is the least common. Even so, it still occurs 48%ss the dataset.
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From: hktexas®@ix.netcom.com (Hall Kinion)

Newsgroups: austin.jobs, tx.jobs,us jobs.offered

Subject: <country=US</country=>-<siate=TX</siale=- Austin -NT Internals <iit e=Developer=tit'e= NEEDED
Date: Thu, <post date=11 Sep 1997</post_date= 15:45:10 GMT
Organization: Netcom

Lines: 17

Message-1D: <= d-34190fe5.9060537 @NNTP.IX.NETCOM.COM<=/id=>
NNTP-Posting-Host: aus-tx22-23.ix.netcom.com

Mime-Version: 1.0

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

X-NETCOM-Date: Thu Sep 11 10:55:19 AM CDT 1997

X-MNewsreader: Forte Agent .99{(16.299

Xref: cs.utexas.edu austin.jobs: 122632 tx.jobs:377769

Subject: <platform=NT</platiorm= Internals <t ==Developer=/iie:
Reply to: Ikl@hallkinion.com

Hot well established mmpany is needmg a szrong <p|at‘0rm>NT<f'p atiorm= Intermnals<!tle=Developer</1ie=-, You must have
a=d4<ireg Y periences years industry experience to beconsidered.

Requirements:

-In depth knowledge of <platiorm=NT</platiorm= internals and experience developing <piatiorm=NT </platiorm=<area=device drivers</area=
-good understanding of <area=communications protocols</area= and the communication stack. <area=TCP/IP</area= is a must!
-<platiorm=Unix</piatiorm= is a ++++

Please respond asap for consideration and more details. If you feelyour strengths and skills are not being utilized, this is the place tobe!

Figure 3.4: An example Job Posting

Most documents in the dataset have multiple occurrencepedker stimeand
location Many documents contain all four fields.

We used the original version of the Seminar AnnouncememusorThis cor-
pus contains a large number of errors and inconsistencieseTs now a cleaned-
up version of the corpus with many of the errors corrected. ugéethe original
version for comparison with other systems that used thggusorlt is also debat-
able whether it is desirable to clean up the corpus. Realtators make mistakes
and by removing this noise from the annotation data we mayhbewraging the
learner to over-fit the corpus. If we remove all the errorsrfrihe data it could
become artificial and may be less use for evaluating systemeél-world use.

3.2.2 Job Postings

The Job Postings dataset consists of 300 newsgroup meskgiisg jobs avail-
able in the Austin area. Figure 3.4 shows an example Jobrigosiihis data is
semi-structured. The first part of the message was creatteelgailing program
so it is strictly formatted. However the rest of the message ereated by a hu-

31



Field Occurrencds Examples ‘

id 299 NEWTNews.872347949.11738.consults@ws-
title 466  |ALC Application Programmer, Visual Basic Developers
company 291 Alliance, CPS, Charter Professional Services In¢
salary 143 $50k to $70Kk, to $60k
recruiter 325 Resource Spectrum
state 462 TX, Texas, Miami, Georgia, Ml
city 639 Austin, Battle Creek, San Antonio
country 363 US, USA, England, UK
language 867 RPG, COBOL, CICS, Java, ¢, c++, SQL, PowerBuilder
platform 705 AS400, Windows 95, windows, portable systems, PC
application 605 DB2, Oracle, DB2 server, sysbase
area 980 failure analysis, multimedia, TCP/IP, internet
required years experience 173 2,2+,Two, 5,4
desired years experience 45 5,4,10
required degree 80 BS, B.S., Bachelor, Bachelor’'s, BSCS
desired degree 21 Phd, BS, BSCS, Masters, MSCS
post date 288 30 Aug 1997, 11 Sep 1997

Figure 3.5: Details of the Job Postings dataset

man. It is this free text that contains all the interestinfgpimation. The author
has employed some formatting such as separating sectidhsewlines but in
general there is not much structure to the message. Whatugteus available
varies from message to message and is not consistent acmssents.

The Job Postings dataset has been anndtéted 7 fields. Figure 3.5 lists
the fields in the dataset along with the number of occurrentesch field and
examples of each field. Thd field is a header that is attached to each message.
Thetitle is the job title for the particular job being advertised. Toenpanyand
recruiter fields refer to the company that has the job available andetraitment
agency that is posting the ad. Thiate city andcountryfields refer to where the
job is based. Thealaryfield refers to the salary offered and can include words as
well e.g. ‘to $60k’. Theapplicationfield refers to various computer applications
that the job requires while tHanguagédfield refers to computer programming lan-

lwe use a version of the corpus that is annotated using thelatrstart-send annotation
approach rather than the corpus’ original template-stytetations.
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<purchabr>LIFETIME</purchabr=> {<purchcode=LFT</purchcode=} EXCHANGE OFFER ACCEPTED

NEW YORK, APril 1 - LIfetime Corp said <acquired>Retirement Housing Corp</acquired>
has accepted its previously announced acquisition offer.

<acqgabr>Retirement</acqabr> will operate autonomously as a separate subsidiary.

Reuter

Figure 3.6: An example Reuters Corporate Acquisition krtic

guages that are required. TAreaandplatformfields are less well defined. The
areafield refers to more general categorizations of the job tyge multimedia.
The platformfield refers to operating systems and general system typab. @
these fields are poorly defined. The fillers that match thesssfieary and are
inconsistent: fillers are marked asea or platformin some documents but not
in others. Theaequired years experiena@nddesired years experiendelds are
very similar and can be difficult to distinguish. Similargquired degreendde-
sired degreare often similar and difficult to distinguish. Sometimes desired
degrees a higher degree than the required one, but IE systems lwes@ntept of
the relationship between various degree qualification® pdst dates the date
that the message was posted and the format is always the darttes dataset
language platform, application andarea are multi-valued fields while the rest
are single-valued. When they occur in a document there &ea séveral of them
i.e. if the document contains thenguagefield, several differentanguage are
usually specified. Some fields are much more common in thasdathan others.
Thedesired degreanddesired years experienéields occur only 45 and 21 times
respectively in the dataset. In contrast éneafield occurs 980 times and then-
guagefield 867. When evaluating the performance on this datasshaeld keep
in mind how often each field occurs in the dataset.

3.2.3 Reuters Corporate Acquisitions

The Reuters Corporate Acquisitions dataset consists oafles taken from the
Reuters newswire describing acquisitions of companies.

Figure 3.6 shows an example from this dataset. The languahese articles
is not grammatical English. It is generally brief and ter3dnere is very little
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Field |Occurrences Examples
| | g

purchaser 624 Sahlen and Associated Inc
purchabr| 1263 Sahlen, Sahlen and Associates
purchcode 279 TIRR,
acquired 683 Norcros Plc
acqabr 1450 Norcros
acqcode 214 OEH, NCRO.L
acqgbus 264 building, oil and gas interests
acqloc 213 Southern California
seller 267 CSR Ltd
sellerabr 431 CSR
sellercod 136 CSRA.S
status 461 proposed, approved, agreed in principle
dlramt 283 542.2 MLN STG, almost a billion dIrs, not discloged

Figure 3.7: Details of the Reuters Corporate AcquisitioasiSet

structure in the documents. It is annotated with 13 fieldkoalgh not all these
fields are used in experiments reported by other IE systems.

Figure 3.7 shows the fields along with the number of occuesrand ex-
amples of each field. Theurchaserfield is the full unabbreviated name of the
purchasing company. Thrurchabrfield refers to any abbreviated referencing of
the company’s name, i.e. any time the company is mentiontibwt using its full
official name. Theourchcodes the company’s stock-exchange code. Similarly
acquired acgabrandacqcodegive this information for the company being ac-
quired andseller, sellerabrandsellercodegive this information for the company
that is selling. This separation of full name and abbredatame into different
fields is difficult for IE systems to deal with. The fields aresgly related, but
there is no information in the annotation schema and reptasen that indicates
that there is a relationship between the fields.

The acgbusandacglocfields describe the area of business that the acquired
company is engaged and where it is located. Jtatusfield refers to the current
status of the acquisition ardiramt refers to the amount of the acquisition. All
the fields in this dataset are single-valued fields. The afdiesl fields are much
more common than the other fields, often occurring sevaradiper document
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and in different forms. The code fields are much less commalig,accurring in
a fraction of the documents.

3.3 Evaluation of Information Extraction Systems

3.3.1 Basic Evaluation

When evaluating IE algorithms we use precision, recall ameésure. These are
standard measures that are widely used to evaluate inflomatrieval systems.

Precision is defined as
TP

TP+ FP

TP refers to true positives which are fragments that wemaetdd that should
have been extracted. FP is false positives and refers tmé&ats that were ex-
tracted that should not have been extracted. Precisionadtel the percentage of
all the fragments that we extracted that were correct. Rescdéfined as

precision =

TP
TP+ FN

recall =

FN refers to false negatives which are fragments that shoand been extracted
but were not. Recall indicates the percentage of all fragm#rat should have
been extracted that were actually extracted. F-measuhe iedrmonic mean of
precision and recall and is defined as

2.preciston.recall

f1

precision + recall

In IE systems there is a trade-off between precision andlrécereasing one
usually decreases the other. If we had a system that exdractengle fragment
and extracted it correctly, we would have perfect precidigtrecall would be low
as we would have missed all the other fragments that we shavd extracted.
If we had a system that extracted every possible fragmentutidvhave perfect
recall but low precision because we would have extracted/fragments that we
shouldn’t have.
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3.3.2 Evaluation Method

A truly comprehensive comparison would compare each dlgoron the same
dataset, using the same splits, and the exact same scostagsyUnfortunately,
a conclusive comparison of the different IE systems is irsjids using the cur-
rent published results. The other systems are evaluated s8ghtly different
methodologies [31].

There are several orthogonal issues regarding evaludftoafirst is whether
to give credit for partial matches (where an extracted fraiginis correct at one
end, but the other end is the wrong token). We take the morsecwative ap-
proach of using exact matching only. Thus if thgeakeris ‘Dr J. Lee’ and we
extract only ‘J. Lee’, this would count as both a false pusitind a false negative.
Thus our evaluations are conservative with respect to aogittue positives: we
must identify both the start and end exactly.

The second issue is how to count correct extractions andseribhe most
conservative approach is to require the system to extreotelirrences of a field
(all slot occurrences: ASO) to get full credit. Thus if a downt contained a
target field which had two occurrences, ‘2pm’ and ‘2:00’ rthlee system would
be required to extract both.

An alternative is a “template” approach (one-slot-ocaumcee OSO). In this
case it is sufficient to extract either ‘2pm’ or ‘2:00’ as thefer to the same
entity. It is assumed that there is one correct answer peratd the extraction
algorithm’s most confident prediction is used as its préaiict OSO evaluation
makes sense for fields where we know that they refer to a suadle (e.g. the
time that a seminar starts).

All the systems we compare to use some form of the templaiegfi{lOSO)
results although they don’t specify exactly how they meagqarformance. BWI
for example, assumes one filler per slot and discards allHmutrtost confident
predictions.

3.3.3 Methods of Counting Extractions: Discussion

In this section we discuss how to correctly count extragigien a rich enough
representation. Unfortunately this correct method is radsfble using current
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standard representation. Thus we also discuss the piaasaf the available
methods of counting extractions.

The annotation methods used in the standard datasets dadknous to rep-
resent entity information about field occurrences in doausésee figure 3.1).
The field is the general concept that we are trying to extect, speaker. An
entity is an abstract thing that an extracted text stringasgnts. Different ex-
tracted text strings (fillers) can refer to the same entity. é&xample, ‘Professor
Sara Kiesler’ and ‘Prof. Kiesler both refer to the same tyntia person named
‘Professor Sara Kiesler'. Different fillers can refer to teme entity or to dif-
ferent entities. Thus a field can be multi-valued or singleied. Single-valued
fields are those where all fillers refer to a single entity. &ample,stimeis a
single-valued field as a seminar can only have a single ttagt- Different fillers
such as 3, 3:00 and 3pm all refer to the same entity. Multiredlfields are those
that can refer to several different entities. For exampkegrainar can have mul-
tiple speakers. A document with fillers ‘Professor Sara kees'Prof. Kiesler’,
‘Woody Vaskula’ and ‘Vaskula’ refers to two entities.

When evaluating an IE algorithm we wish to count how many exdrand
incorrect extractions the system made. The task in IE iseatify the entities
present in documents. Current systems identify fillerserathan entities. It
should be sufficient to identify each entity rather than efddr. For example,
if we extract that the start-time of a seminar as 3pm but faitientify 3:00 as a
start-time it should not matter. For single-valued fields theans that if we iden-
tify one filler per document and that document is correct waughget full credit
for that document. For multiple-valued fields we would nealentify one filler
for each entity in the document. This seems the most sereioleorrect method
for evaluating an IE system but it is not possible to use treghod correctly with
the current annotation schemes.

This gives two possibilities for evaluating with the currannotation scheme.
The first scheme assumes that all fields are single-valuedts fthget full credit
for a document you need to identify one filler for each fieldhia tocument. We
will call this OSO (one slot occurrence) evaluation. Thiswamption is incorrect
for multi-valued fields such aspeaker When a document has multiptpeaker
entities we can get full credit for identifying only one oktin. On the Job Post-

37



ings dataset several of the fields can have many differentroerces in a single
document.

The second method of evaluation is to assume that all fielelsradtiple-
valued and all fillers refer to different entities. Thus tad §iél credit for a doc-
ument we need to identify all fillers for all fields in the docaimt. We will call
this ASO (all slot occurrence) evaluation. This assumpsancorrect for single-
valued fields and multi-valued fields where any entity hasatloan one different
filler.

Neither of these methods are ideal. We cannot correcthuat@llE systems
because of the limitations of the annotation system usezk(#xn the case where
all fields are single valued). OSO evaluation will overestiethe performance of
a system on multi-value fields while ASO will underestimaseperformance on
single-value fields.

Another issue is whether to assign any credit for partiachnes. For example,
if the speakerof a seminar ‘Professor Sara Kiesler’ and the system exstthet
filler ‘Sara Kiesler' it is still a useful piece of informatioalthough not exactly
correct. Some other IE systems assign partial credit faigdanatches. A more
complex entity annotation scheme might recognize thatthws fillers are the
same abstract entity.

3.4 Experimental Setup and Document Corpora

When comparing against other systems we use their publigsedts for com-

parison. These systems usually don't specify in detail tle¢hods of evaluation
used. There is no consistent evaluation methodology usedhey IE systems so
it is difficult to compare directly against other systemste@fdifferent systems
use different evaluation methodology and don’t descrileeetaluation method-
ology used in their publication. To fairly compare our systi® other IE systems
we use the most conservative evaluation metric when evauaur own sys-

tem. Various systems used variations of OSO evaluation ant ©f them give
credit for partial matches. When evaluating our systemsgive no credit for

partial matches and we use ASO evaluation because it is nooseovative than
OSO evaluation. Thus our evaluations are conservativdatioa to other IE sys-
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tems published results and are likely understated in oeldti competitor systems.
(Note: The Pascal Challenge standardized on ASO evaluaiibmo credit for
partial matches). The other systems that we compare aggnstally use less
conservative methods than us in our published results.? (@iP&s credit for par-
tial matches and the originally published results use OSfluetion. The HMM
results of Freitag and McCallum assume there is one comsgtexr per document
so it is a form of OSO evaluation. BWI also uses OSO evaluati@velli et al.
[26, 31, 30]describe in more detail the evaluation used by other systems

We used a 50:50 split of the dataset repeated 10 times. RdsulBWI,
RAPIER and (LP¥ come from other sources [31], and where possible we use the
same splits for each system.

For the Pascal Challenge dataset the evaluation methodealag different
than for the other IE datasets. The Pascal Challenge ei@aiuaethodology was
precisely defined and consisted of a four-fold cross-vébdeof the training data
and a held-out test set. For the cross-validation expetithertraining data was
divided into four groups. Each group is used for the testiitt ¥he other three
groups being used for training. The other experiment irrdlraining on all the
training data and testing on all the test data. Becausedtdifferent methodology
and compared different systems, we leave discussion ofadbedPChallenge to a
separate chapter.

3.5 Summary

In this chapter we discussed some of the issues surroundengrinotation of
datasets for IE.

e We described the three standard IE benchmark datasetsethm& An-
nouncements, the Job Postings and the Reuters CorporatésAics.

¢ In the past evaluation of IE systems there has been litttedstaization of
IE evaluation methodology.

e We described what we believe to be the correct method of atiatylE sys-
tems. Unfortunately it is not possible given the currenbdéad annotation
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schema.

We described two methods of evaluation that are practicdl drrent an-
notation schemes: OSO assumes that all occurrences of adfeldto a
single entity and requires the IE algorithm to extract oneuo@nce of the
field per document. ASO is more conservative and requirekctaggorithm

to extract all occurrences of a field in a document.

Our evaluation methodology is conservative with respethéaresults pre-
sented by other IE systems. Thus, even though it may they roape
directly comparable, our results are at worst understatedlation to the
competitors.
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Chapter 4

A Classification Approach to
Information Extraction

4.1 Overview

In chapter 2 we gave an overview of Machine Learning and haarit be used
for prediction and for Text Classification in particular. tms chapter we will
introduce a basic approach to Information Extraction ud#arhine Learning.
This basic approach treats IE as a classification task anticesiseparate models
for identifying the start and end of a fragment with a simpletihod for deciding
which starts to pair with which ends. We will expand and ereathis system
in the following chapters as well as investigate the varaggects of the systems
performance.

We are using a Machine Learning approach to IE so our systemsisie of
two distinct phases: learning and extracting. We take arsigesl approach to
learning. In the learning phase our system uses a set ofddb@bcuments to
generate models which we can use for future predictions. ektiaction phase
takes the learned models and applies them to new unlabaldents using the
learned models to generate extractions.
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Figure 4.1: Information Extraction as classification

4.2 Information Extraction as Classification

In chapter 2 we described the standard approach to Textifilaien. IE is a
token classification task rather than a Text Classificatask.t With IE we are
working with texts but the basic unit that we are seeking assify are tokens
in the text rather than the entire text. With Text Classifaratve are seeking to
identify whether an entire text is a member of particulaegaty. With IE the
categories are start and end, and the objects we seek to &3sigese categories
are the individual tokens.

With TC we represent entire documents using a binary bagestis vector.
With IE we are representing individual tokens. We cannottheeBOW approach
as used in TC as each token is only a single word. We much erazdigonal
information about the token to enable our learning algaritb generalize. For
IE we encode several features of the token as well as re#dtioformation about
the surrounding tokens.

The features include the specific token, as well as parpeésh (POS), chunk-
ing, orthographic and gazetteer information. The feataresdescribed in more
detail in chapter 5 and in appendix C. In addition, we addufiest to represent
a fixed-width window of tokens on either side of the instaad¢eken. The learn-
ing algorithm uses these features to create a model thatisangdiish between
tokens that are starts of fields, ends of fields or neither.

42



We treat IE as a classification task. Following [20, 12], tppraach that we
use is to treat the identification of fragment start and ersitjpms as distinct token
classification tasks. The instances are all tokens in thardeat. All tokens that
begin a labelled field are positive instances for the stassifier, while all the
other tokens become negative instances for this class8iarilarly, the positive
examples for the end classifier are the last tokens of eatidalfield, and the
other instances are negative examples.

Figure 4.1 gives an example of what we mean by IE as classificalhere
are two classifiers - one to identify starts of fragments aratteer to identify ends
of fragments. Each token is classified as being a start orstem-and an end or
non-end. When we classify a token as a start, and also ¢fas®f of the closely
following tokens as an end we extract the fragment betweesethwo tokens.

The system consists of two different phases - learning atrd@ing. In the
learning phase, the system uses annotated documentstaededentify starts and
ends of the field we wish to extract. Each token in the docurnseepresented by
a single instance. Each instance has a set of features gatlukethe given token.

In the example given in Figure 4.1 the token ‘Bill’ is poséiexample for the
start-of-field model and all the other tokens are negatiargles. The token
‘Wescott’ is a positive example for the end-of-field modeti @il other tokens are
examples of tokens that are not the end of a field. The systemthese two sets
of examples to learn two different models - one that can reizegthe start of a
field and one that can recognize the end of a field.

One we have learned these models from our training data, wausa the
learned models to extract fillers from new documents. In ttieaetion phase
we apply the two learned models to each token in the docunwatmark each
token as being start/not-start and end/not-end. Thus e&eh tan be a start, end,
neither or both. After this phase we match up starts and érasvere predicted
by our model. In the example shown we have predicted one ethdvenstarts.
We must decide which (if any) of the starts to match with thd amform an
extracted fragment.

The extraction of fillers follows the token classificatioragk. We use a sim-
ple histogram model. In the example above there are twolplessitracted fillers:
‘James Morgan’ and ‘Professor James Morgan’. We can exbattitfillers or we
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can extract the fragment that has the highest confidence stieate confidence
asC; x C. x P(le — s|). C, is the confidence for the start predictio@, is the
confidence for the end prediction. We estimate the confidentlee start and
end predictions for an instance as the distance of thatrinstérom the hyper-
plane relative to the maximum distance seen in the trainatg.dP(|le — s|) is
the probability of a fragment of that length which we get frtme tag-matcher
histogram.

To summarize, this IE classification approach simply leéorgetect the start
and end of fragments to be extracted. It treats IE as a stdwthssification task,
augmented with a simple mechanism to attach predictedsstdend tags. During
the training phase we record the length of each field occoerelfrom this length
histogram we calculate the probability of a filler of thatdém occurring. We
use this probability to decide whether or not to extract pugfillers. When we
identify starts and ends in close proximity to each othehwie end following the
start, the probability of extracting the filler is estimatseain the length histogram.
Our experiments demonstrate that this approach genemdigh precision but
low recall. We will refer to this simple IE as classificatioppaoach as EE; (or
L1).

Fig 4.2 summarizes the learning process. The set of traiexagnples are
converted to a set of instances for the start and end tagssasluk above. We
will describe the instance representation in more detathénext chapter. Each
token in each training document becomes a single instandas @ither a positive
or negative example of a start or end tag. Each of these itestadm encoded ac-
cording to several features for the particular token in joesand the tokens sur-
rounding it. Then the attributes are filtered according forimation Gain (This
process is described in chapter 5). These instances aredp@sa learning algo-
rithm which uses them to learn a model. At the end of the Lhing phase we
have models for start and end tags and a length histogramdatart-end pairs.

The start-end pairs are passed to the tag-matcher whichigexthwith match-
ing start and end tags. Our experiments involve a tag-matehieh generates a
histogram based on the number of tokens between each staenahntag in the
training data. When matching predictions, the probabiitya start-tag being
paired with an end-tag is estimated as the proportion witichvha field of that
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length occurred in the training data. This approach persoastequately and we
don’t focus on the tag-matching further.

Once we have learned the models from the training data, waemaly them to
new documents in order to extract fragments from them. Eigu8 summarizes
the extraction process. The documents we wish to extract @ converted into
a set of test instances that have the same representatiba taihing instances.
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Figure 4.4: L1 Precision for the Seminar Announcementssghta

We then apply the models for start and end to these instanidas. gives us a

set of predictions for a set of starts and ends for the fieltleawant to extract.

These predictions are passed to the tag-matcher. The tapenaises the proba-
bility information from the training phase to decide whic¢hrss to match to which

ends. Matching the predicted starts to predicted endstsaisuh set of extracted
fragments for the field we wish to extract.

4.3 Evaluation

We evaluate this simple learner using the methodology de=stim chapter 3. We
evaluated it on the three standard datasets and comparethi¢ bther systems
described in chapter 2. There are several parameters tindecaaried for this IE
system. We examine the effect of varying some of these pdeasim the next
chapter. For the experiments presented here we use a deftaftparameters.
Figure 4.6 shows the performance of this basic IE as clagBdit approach
on the seminar announcements dataset. The results aretecksethree graphs
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Figure 4.5: L1 Recall for the Seminar Announcements dataset
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Figure 4.6: L1 F-measure for the Seminar Announcementseata
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Figure 4.7: L1 Precision for the Job Postings dataset

showing precision, recall and f-measure (Note: for HMM wéydrave f-measure
results). On this dataset, the L1 approach generally oiatmes the other IE
systems.

Our approach has the highest precision of all five IE systemthieee of the
four fields gpeaker, location, etimesecond best precision on the other field.
ELIE;; has the best recall on two of the fieldspéakerand location) while it
has the worst recall on thetimefield. When we consider f-measure, our sys-
tem has the highest f-measure on ipeakerandlocationfields while it has the
worst f-measure on thetimefield. Thespeakerandlocationfields are generally
regarded as the more difficult fields in this dataset whilestitaeandetimeare
regarded as being easier and more structured.

Figure 4.7 shows performance ofIE ;; on the Job Postings dataset compared
to Rapier, (LPJ and SNoW-IE. Again we show precision, recall and f-measure.
In total there are 17 fields in this dataset. When we considegigion, EIE;,
performs best of all on nine of the 17 fields. It has the worstision for 4 of the
17 fields. When we look at recall LEE ;; performs best on only one of the fields
and is the worst performing system on 2 of the fields.
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Figure 4.9: L1 F-measure for the Job Postings dataset

49




Corporate Acquisitions : Precision

100
S0
B0

70 H u 1

60 1

o Elie-L1

50 T ] m Rapler

a0

30
20

Nl ‘N
0+ T T T T T T

Figure 4.10: L1 Precision for the Reuters Corporate Actjoiss dataset

For f-measure, BHE;; is best for 5 of the fields and it is the worst performing
system for 2 of the fields.

We conclude that the approach is competitive with the otlistesns on this
dataset. For most fields it is one of the better performingesys and it is rarely
the worst performing system.

Figures 4.10, 4.11 and 4.12 shows the performanceLdf & on the Reuters
Corporate Acquisitions dataset compared to Rapier and HiMNe@sure only).
ELIE;; has higher precision thanARIER on every single field. It generally has
poorer recall than Rapier, beating it on only 2 fields. HMM tresbest f-measure
on each of the fields that we have results for.

We conclude that BE; is competitive with Rapier on this dataset. It has
higher precision on all the fields. Its f-measure is somedibetter and sometimes
worse than Rapier. HMM performs best on this dataset.
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Figure 4.12: L1 F-measure for the Reuters Corporate Adipnis dataset
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4.4 Discussion

Figure 4.13, Figure 4.14 and Figure 4.15 summarize the pedoce of EIE
against that of other IE systems. The horizontal axis showgperformance of
ELIE;; while the vertical axis shows the performance of the conesystem.
Each point represents the performance ok, vs a competitor on a single field.
Points that occur above the diagonal line indicate that tdmpetitor system is
doing better while points occurring below the diagonal lingicate that EIE

is doing better. On the precision graph, most of the poirdsatow the diagonal.
For recall, the majority of points are below the diagonal loistered close to it.
For f-measure, most of the points are below the diagonalsdlioat are above it
are generally close to it.

We conclude that the approach described is competitivetivetlother IE sys-
tems. In fact on many fields, this simple approach outperédima state-of-the art
competitor IE systems.

In the following chapters we investigate variations of tHeel classification
approach and techniques for augmenting it. We investigaiehaspects of the
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algorithm contribute to its performance. In chapter 5 wewks the feature rep-
resentation used in more detail and investigate how mucketttares contribute
to performance. We also investigate the overall effect afopmance of attribute
filtering and the choice of learning algorithm. In chapter & dscuss the effect
of dataset imbalance and instance filtering on the perfoceahthe system.

Then in chapter 7 we extendLEE ;;’s one-level classification approach and
introduce a two-level classification approach that sultistiyimproves perfor-
mance.

4.5 Summary

In this chapter we described a simple 1-level classificajmproach to IE (EIE ).
This approach represents IE as a token classification tasktmpining separate
SVM classifiers for identifying starts and ends of fields arateches up starts and
ends using a simple histogram model.

We evaluated this approach using three standard IE datasetpared it to
several other state-of-the art IE algorithms and showetdttilacompetitive with
other state-of-the-art IE systems. This approach was teegasforming system
on the SA dataset, it was competitive with the other IE athans on the Job
Postings dataset and was competitive with Rapier whilegbeutperformed by
HMM on the Reuters dataset. It gave high precision comparttdother systems
whereas recall was not as competitive.
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Chapter 5

Features, Attributes and Learning
Algorithms

In order to apply Machine Learning techniques to any clasgifin task we must
supply a set of examples for the training algorithm. Therewy algorithm then
uses these examples as a basis for building a model with Viditigre predictions
can be made. Each example instance is described by a setwktethat describe
various properties of the instance. We use a vector spacelrfaycour features.
The features are not defined in advance but depend on thesttiaroccur in the
documents.

In the case of IE each of these examples is a token. Each tekenaxample
of a start, end or neither. Since each example is just a stogén, the learning
process requires that a set of features be identified andias= with each to-
ken. These features are used to represent the token andearéythe learning
algorithm to differentiate between tokens.

Each instance is characterized by a set of attributes. B#dbuée measures
a different aspect of the particular instance. In the exampMachine Learning
that we gave in Figure 2.1 the attributes were pre-definedfiaad in advance.
However when dealing with text, it is not possible to fix thieiatites in advance as
the attributes depend on the tokens that occur in the texd clhbice of features to
be used as attributes can affect the quality of the modelrgeteby the learning
algorithm. It is important to identify the salient feature®/e want to identify
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features that generalize well and are not too specific as theegures will be
useful in classifying instances that are different to thesen in the training data.

5.1 Features and Encoding

In chapter 2 we discussed the representation of text for Madbearning. Our
approach to representing text documents for IE is similaraolapted for the IE
task.

Documents are broken into tokens. Each token is a singlarinst Each
instance can be a positive or negative example for the stana of the field we
are trying to extract. A token is defined as any continuouseece of alphabetic
or numeric characters. Punctuation symbols are treatedpasate tokens. Each
instance has several kinds of features associated withésd feature-types are:

Token The actual token.

POS The part-of-speech of the token. Each token is tagged vgittortresponding
POS using Brill's POS tagger [6]. We also represent chunkif@rmation
about the tokens. The POS tags are also grouped into noasgshand
verb-phrases (Chunk).

GAZ The values associated with the token in a gazetteer. Thdtgazés a
user-defined dictionary. It contains lists of first-named @st-names taken
from the U.S. census bureau, a list of countries and citie® identifiers
(am, pm), titles (Jr., Mr), and a list of location identifiarsed by the U.S.
postal service (street, boulevard). Pre-defined sequesfciEsmtures that
match pre-defined entities are also marked as entities (ER) entities
recognized are ‘person’ and ‘time’. For example the seqae@figazetteer
features ‘firstname’ followed by ‘lastname’ would additaly be marked
as ‘person’.

Orthographic These features give various orthographic information &lbio@
token. Examples of these features include whether the tiskepper-case,
lower-case, capitalized, alphabetic, numeric or punainat
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Pair In addition to representing all the above features sepgrate also add
features are all possible pairs of the POS, GAZ and orthdgedpatures.
For example, a token that is a name and is capitalized coulddresented
by a single feature.

All features are binary. Every instance is represented actor of all the fea-
tures. Each feature can have value 1, indicating the presafrtbe feature in that
instance, or O indication the absence of the feature in tiséance.

There are two kinds of features that are abstractions ofdkelfeature types
listed above. Chunk features are an abstraction of the PA&&s. ERC features
are a higher level abstraction of the GAZ features. The idgana the Chunk
and ERC features is to reduce the burden on the learningitiggiby encoding
some potentially useful information. For example, thenearshould be capable
of learning that a name is often a first-name followed by ahashe, but if we
add a feature to encode this information it should allow #eaner to focus on
whether the name should be extracted or not.

To represent an instance, we encode all these featuresafqraltticular token.
In addition, for a fixed window size of w, we add the same fezdtior the previous
w tokens and the next w tokens. For example, the string

Pl ace: WeH 4601
Speaker: Al ex Pentl and

would be tokenized and tagged as

Token |POSChunk Gaz | ERC |Orthographi¢
place [NNP alpha, cap
punct
weh |NNP| alpha, cap
4601 num
\n
speakefNNP alpha, cap
punct

alex [NNP| NPs firstnam$persor alpha, cap

pentlandNNP| NPe Iastnam%perso alpha, cap
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If we encode the instance centered at the takdew using a window of size
1 to encode relational information about the next and previokens, we would
get the following features:

Tok _alex_ 0, Tok :-1, Tok_pentland_+1,
POS_NNP_0, POS NNP_+1,

C NP_s 0, CNP e +1,

E person_0, E _person_+1,

O aplha_0, Ocap 0, O punct_ -1,

O _apl ha_+1, O cap_+1

All tokens in the dataset become a single instance and adeddn this way.

Each instance is represented as a binary vector of all thbw#s that occur in

the training set. Each instance is encoded using this vegtbrthe presence or
absence of a particular feature being represented by a 1tdh® aector position

that represents that feature. There are a large numberibliétts and the vectors
are very sparse. For example training on 50% of the Seminaomcements
dataset gives approximately 74K attributes. Training o¥% 5 the Job Postings
dataset gives approximately 43K attributes, training o%o5f the Acquisitions

dataset gives approximately 48K attributes while a trailit-of the Pascal CFP
training corpus gives approximately 170K attributes.

Because of the large number of attributes we filter the aitie according
to Information Gain (see section 5.2). It is also possibldilter the negative
instances at this point in order to reduce learning time died the prior proba-
bilities of the learner (see chapter 6).

In addition to the features described we create new featisiag pairs of fea-
tures. The combination of several features could be mucimgér evidence of
the class of an instance than the presence of the featurnegunally. While the
learning algorithm should give higher weight to instancés wultiple informa-
tive features, adding pair features may help the learniggrahm to recognize
these. For example, if an instance ifrathnameand the next token islastname
than adding a featurdirstnameand nextastname’may help the learner’s ability
to generalize.
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We create features for all possible pairs of non-token featu.e. we create a
feature for all possible pairs of the features that occun&@ROS, orthographic and
gaz features. We exclude the token features because tleeselaige number of
token features. Representing all possible feature pailsding the token features
would result in a huge increase in the number of features.

5.2 Attribute Filtering

Our method of representing instances generates a largeemwhdttributes. This
is because we use the tokens as features. Excluding the tekenmes gives a
small fixed number of features. For example, using 50% of thmiBar An-
nouncements for learning with a window of 4 gives a represent with over
70,000 attributes. Many of these attributes are rare andranconly a few in-
stances. Many of them occur too often across both classesuedful. The vast
majority of features have no discriminative value.

Having such a large feature-set results in large learnmggifor the learning
algorithm. We filter the majority of the attributes to reduearning time. We
only wish to use features for learning that are useful focrilisinating between
classes.

We filter attributes according to Information Gain [40]. dnination Gain es-
timates the amount of extra information that we get from hguhe attribute
present. It gives us an estimate of how well a particularbaite separates the
training instances according to their correct classifizatiWe only want to use
attributes that give us some new information that we can aiskstriminate be-
tween classes.

Entropy measures the amount of disorder in a system. In geafdVachine
Learning, it measures homogeneity of the instances. Faraf sestances S for a
binary classification task, we can measure the entropy of S as

Entropy(S) = —ptlogeypt — p~logap™

wherep™ is the proportion of positive instances in S gndis the proportion
of negative instances in S.
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Figure 5.1: Filtering attributes by Information Gain

Using an attribute that is highly discriminatory for theger class will give a
large reduction in entropy while attributes that have nemisinatory value will
have no effect on the entropy.

The Information Gain of an attribute is defined as the exgkoduction in
entropy that occurs when we split the instances accordirigabattribute. The
Information Gain of an attribute A, relative to a set of exd@s(5 is defined as

Gain(S, A) = Entropy(S) — Z || Entropy(S,)
veValues(A) |S|

Values(A)is the set of all possible values for attribude S, is the subset of
Sfor which attributeA has valuer. Gain(S,A)gives us the expected reduction in
entropy caused by knowing the value of attribAte

Figure 5.1 shows the performance on the Seminar Announdsendamaset
with various levels of attribute filtering. The vertical axshows f-measure while
the horizontal axis shows the number of attributes useddaming. For each
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of the four fields, there is no benefit in using more than 50®Gbates. This
indicates that most of the attributes that are generatedatreseful for learning.
In fact the system doesn’t require a large number of attesotd perform well. For
thestimeandetimefields, the performance with 1000 attributes is not signifilya
worse than with 5000 attributes. For the other two fielggakeandlocation the
performance continues to increase up to 5000 attributege ifse more than 5000
attributes, the performance does not increase any furtdewever it does not
decrease either. This indicates that the extra attribudestlimprove our ability
to learn but neither do they harm it, e.g. by introducing aoighis indicates
that filtering itself does not improve accuracy. If it did, weuld expect to see it
drop as less attributes are filtered. The only thing the eadtrébutes contribute
is extra learning time. From this we conclude that only a $pition of all the
attributes are necessary for learning. Removing most ohthl improve the
execution time of the algorithm but will not affect the acacy. We conclude that
it is sufficient to use the top 5000 attributes as ranked bgrination Gain for
learning our models.

We rank all attributes according to Information Gain andkgite topn at-
tributes for representation. In experiments werget5000. This is EIE’s default
value for all experiments.

5.3 Features-sets and Performance

Figure 5.2 show the performance of the various kinds of feston the Seminar
Announcements dataset. The vertical axis gives f-meashiie whe horizontal
axis shows the various fields. We show the performance faytsm using only
token features (Tok), token features with either POS (TokOS), orthographic
(Tok + Orth) or gazetteer features(Tok + Gaz), all featurxeept the pair features
(All - Pair), all features except token features (All-Tok)dgall features (All).
Adding the pair features gives no improvement in perfornear@@n thestime
andetimefields the performance using only the token features is gigfoad as
performance with any of the more general features added.ifitlicates that these
fields are specific and limited in the tokens that occur in thachthat there is little
scope for improvement using generalization with the moexHig features. For
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Figure 5.2: The effect of various feature-sets on perfogaan

thelocationandspeakeffields there is an improvement in performance when the
other features are used. This indicates that these fieldsrave different values
and generalization using features such as the gazetteertudjraphic features
helps with performance.

For thelocation field adding the orthographic features improves the perfor-
mance over using the token features alone. Fospeakerfield, there is a large
performance improvement using the extra features ovegukimtoken features.
This is because there is large variability in thigeakes in the dataset whereas
stimeand etimeand to a lesser degréecation have a more limited number of
different values. Thus for thepeakeffield the ability to generalize with features
such as whether the token is capitalized or whether it is pgrrooun are impor-
tant for performance. Both the orthographic and the POSifeatffer significant
improvement over using the token features alone for thekgpdld.

Using the gazetteer features offers a large improvemernewsing all these
features further improves performance. Using all feataxeept for token feature
gives good performance. It's performance is a good as usikentfeatures for
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three of the four fields and substantially better for the kpeéield. These two
feature-sets both give good performance and use diffeeattifes. These two
feature-sets offer two redundant views of the data and theylme suitable for an
active learning approach using co-training [5] and muttidundant views [36].

There is little benefit in adding pair features soifEs default feature-set is
(All-Pair).

5.4 Learning Algorithms

The design of our system is modular. It uses the Weka Macheaering library
[46] for learning the models. We used the SMO algorithm asleaming al-
gorithm for most of the experiments. We can however use arth@Machine
Learning algorithms that are implemented in Weka in its @lam this section
we investigate some of the other learning algorithms abbaleOther systems use
different learning algorithms - often some form of induetirule learning. The
choice of learning algorithm can have a considerable etiadhe performance
of an IE system. Other approaches usually compare thegmsgsas a whole and
don’t consider the effects of the various parts of the systiéon example, would
(LP)? perform significantly better if it had a stronger learningaithm?

Figure 5.3 shows the performance of our one-level classificapproach with
several different learning algorithms on the Seminar Amuaments dataset. The
vertical axis shows f-measure. Naive Bayes performs veprlpmn this task,
being significantly worse than the other algorithms (apamf OneR) on every
field. Winnow also performs poorly. It is significantly wordean SMO and Rip-
per on three of the 4 fields. Ripper performs poorly on the etiield. On the
location field it is better than Winnow and Naive Bayes bungigantly worse
than SMO. On thespeakerand stimefields it is competitive with SMO, almost
exactly matching it. ID3 is the second best algorithm on $ef4 fields, outper-
forming Ripper on three of the four fields. SMO is the best@aning algorithm.
It performs best on all four fields, with only Ripper able totofait on two of the
fields. OneR generally does badly, but does surprisingly evethestimefield?.

LIn this case OneR generated the following rules for starteni TOKEN_time_-2 -> start
and G_ampm_0 -> end. This means that a token is tagged a®ftarstimeif the token time
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Figure 5.3: Performance of different learning algorithms

This indicates that there is a wide variation in performadepending on
which learning algorithm is used. It also indicates thas tisia complex task.
Naive Bayes often performs very well on text classificatiasks but on this task
its performance is very poor. The different between the #medtworst performing
algorithm on each field is large. We conclude that SMO is a gimice of learn-
ing algorithm for this task and the choice of learning altjori can play a large
part in the performance of the system. The performance gbdRipdicates that
an inductive rule learner can do well on this task.

In summary SMO is the best learning algorithm, Ripper andpB8orm rea-
sonably well on this task, while OneR, Winnow and Naive Bayage poor per-
formance. SMO is EIE’s default learning algorithm.

occurs two tokens back and a token is tagged as an estihodif the gazetteer marks it as type
‘ampm’.
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5.5 Summary

In this chapter we investigated some of the various aspéasrdE system that
contribute to its performance. Rather than having a mdmollE system to com-
pare to others, itis important to understand which parte®fE system contribute
to performance. Each different IE system has various cauvbat give it an ad-
vantage over other systems. But they are usually compart#teinentirety. If
we separate IE systems into their components and undenstand components
improve performance we could build an IE system that incafsal the best com-
ponents of each individual IE system.
We conclude that:

e Token features alone give good performance.

e Other more general features also give good performance @daidgathem
with the token features gives a performance boost.

e The token features and other features form two redundawsvié the data
which might be suitable for an active learning approach to IE

¢ Filtering a large number of attributes doesn't affect perfance as long as
the number of attributes remains above a certain minimugestiold.

e The choice of learning algorithm is important. Some leagratgorithms
exhibit poor performance on this task. SMO is a good choicéefarning
algorithm.
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Chapter 6

Instance Filtering

6.1 Imbalanced Data

Imbalanced datasets are those where the number of exanfiples class far out-
numbers the number of examples of another class, i.e. théeuaf negative
instances is far greater than the number of positive inssgocvice versa. When
there are a small number of positive examples it becomes difficilt to learn to
identify the positive instances. In many cases howevertiiggositive instances
that are of interest so it is important to identify them. Soggpwe wish to auto-
matically identify credit-card fraud and for every frauent transaction there are
999 normal transactions. A simple classifier that alwaydipte that a transaction
is OK would be correct 99.9% of the time but it would never itifgra fraudulent
transaction. Such a system would also have high precisteallrand f-measure.
Even though its accuracy is very hight completely fails in its assigned task.
SVMs are one of the best performing learning algorithms omymaarn-
ing tasks. However their performance drops when used onlanbad data [3].
Learning with imbalanced data is a problem for all learnitgpathms. SVMs
perform well on moderately imbalanced data and are not dy b#fdcted by data
imbalance as other algorithms. This is because SVM leaoms fnstances that
are close to the boundary between classes, i.e. the supddrs. It is not af-
fected by negative instances far from the boundary everitthre many of them.

LAssuming accuracy is calculated with respect to both thdipesind negative classes.
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However, as imbalance increases SVMs performance wilesuff

There are two main approaches to dealing with imbalance iIMESVThe
first is apply weighting to the positive examples so that #erning algorithm
pays more attention to them and to penalize it more for nesdigng positive
examples than negative examples. For SVMs this can be adistweg by using
penalty constants for the different classes of data sudtethars on the positive
instances are more costly than errors on the negative retan

The second approach is to pre-process the dataset to makedtlalanced,
either by undersampling the negative examples or oversagle positive ex-
amples. The aim in each case it to make the dataset more bdlahhis can be
done by removing some of the negative instances (undersaghor by adding
some more positive instances (oversampling). SMOTE [9lopers oversam-
pling by adding new synthetic positive instances. It does lly assuming the
regions surrounding positive instances in the instanceespad between posi-
tive instances are positive and adding positive instanteshese areas. It is not
clear if undersampling is suitable for SVMs. Removing ins&s far from the hy-
perplane should have no effect while removing instancesedo the hyperplane
could adversely affect performance.

Akbaniet al. [3] discuss these approaches to dealing with data imbakamte
combine the two methods. They describe the causes of pefaenloss with
imbalanced data as being:

1. Positive points lying further from the ideal boundarythimbalanced data,
SVMs tend to learn a boundary that is too close and skewedrtisnhe
positive instances (see figure 6.1). Because there are marg megative
instances than positive instances, the unpopulated atha ofstance space
between the positive and negative instances is more likelgitain positive
instances than negative instances. If it contained negatstances we are
likely to have already seen them. However the SVM places ypetplane
between the positives and negatives so as to maximize mangiminimize
error. Thusiitis likely that the boundary is too close to thsipive instances.

2. Weakness of soft margins. The margin is the distance leetwee hyper-
plane and the instances. SVM places the hyperplane so tisaastfar as
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Figure 6.1: SVM and imbalanced data

possible from both the positive and negative instances rBafgins allow
a hyperplane that doesn’t separate all the instances, pataes most of
them. There is a trade-off between maximizing the marginramimizing
the error. With highly imbalanced data, maximizing the nrakgould lead
us to classify everything as negative. This explains why S\l when
the data imbalance becomes very large.

3. Imbalanced support vector ratio. Since the ratio of pastb negative sup-
port vectors is imbalanced, the neighbourhood of an instafase to the
hyperplane is likely to be dominated by negative supportorsc This
means the SVM is more likely to classify an instance that iselto the
boundary as negative.

Their experiments show that undersampling improves thawmie of the learned
hyperplane but the orientation suffers. They claim thatausampling will move
the learned boundary closer to the ideal boundary, but magradly alter the
angle of the hyperplane. Despite this claim, their expenitsishow that under-
sampling performs better than oversampling with SMOTE aadibg the learner
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towards the positive examples. The only approach that pegd better than un-
dersampling was their algorithm that combined oversarg@md biasing.

Another reason to remove instances is to reduce learnireg 8imce the SVM
only uses instances that are part of the support vectorgdoning we can elim-
inate some of the instances without affecting the accurédheoclassifier. The
learning time for a classifier is dependent on the numbetdbates and the num-
ber of instances. Since we filter the attributes and keep tingoer of attributes
constant at 5000, the learning time is directly proportidnahe number of in-
stances. There can be a large number of instances but onlalh ramber of
them are useful for learning. So it is useful to filter out thstances that are not
useful for learning.

6.2 Datalmbalance in IE Datasets

Representing IE as a classification task gives rise to legrtaésks with a high
degree of imbalance. This gives rise to the behaviour thategeat level 1 where
we have high precision but low recall. The fact that we havégh humber of
negative instances and a small number of positive instamben learning means
that the learner is much more likely to predict negativedanses than positive in-
stances. For an instance to be predicted as positive, thestba strong evidence
that it is a positive instance. Thus the imbalanced modelsranre likely to make
errors that are false-negatives than false-positives.

Data imbalance explains the behaviour that we see at L1 with.EWith
L1 learning there is a much larger number of negative ingsrtban positive
instances. Because of the reasons described in the presgotisn, the L1 learner
is more likely to predict a negative instance that a positistance. If a positive
instance is predicted it is because the evidence that it wagiye was strong.
Instances that are close to the boundary between classesoaeelikely to be
classified as negatives. Thus when we make a prediction fos#iye instance
it is likely to be correct. Thus we have high precision at L1 lmw recall as
many positive instances that are close to the boundary eceréctly classified as
negative.

The two-level approach described in chapter 7 reduces thalance in a tar-
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geted way and this leads to improved recall while sacrifisioge precision.

However we can apply instance filtering techniques to thevelIE system
(ELIEL;). Removing instances can improve execution speed becagdeave
less data to learn from. It can also improve performance byaieg the data
imbalance and decreasing the likelihood of producing fatsgatives.

The datasets that we use for experiments exhibit a largeedexrfimbalance.
The Reuters Corporate Acquisitions dataset has an imbalaihapproximately
100:1, the Seminar Announcements dataset 200:1, the jainge$00:1 and the
Pascal CFP 900:1. It is interesting to note thateEs performance in relation to
other IE algorithms is proportional to the level of imbalanc the dataset, i.e. as
the level of imbalance increasesIE’s ability to outperform other systems falls.

6.3 Instance Filtering Techniques

6.3.1 Random Negative Instance Filtering

The first technique is a simple random negative instance. fiddl positive in-
stances are preserved, while a predefined percentage aéghéve instances are
randomly removed. The advantage of this method is that ig Easnplement
and efficient to execute. There are a lot of instances in tkeettiat are very un-
informative and contribute nothing to the learned modelweler there are also
informative negative instances and this method can renfmaettoo. The perfor-
mance of this technique can vary widely over different rumshe same data. If it
doesn’t remove any very informative negative instances itseperformance can
be very good. However if it deletes a number of informativgat&e instances
while keeping uninformative ones it can perform very poorly

Figure 6.2 shows performance (f-measure) of this approacth® Seminar
Announcements dataset. The vertical axis gives the f-nmeaghile the horizon-
tal axis gives the percentage of negative instances that radomly removed.
This experiment follows the same methodology as the exmarisndescribed in
chapter 4. For each field, performance is slightly highdraty but then begins
to fall as the filtering rate increases and falls rapidly whnfilter rate is high.
For speaker stimeand etimethere is no appreciable difference in performance
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Figure 6.2: Random negative instance filtering: F-measure

with the filtering rate set to 80% than with no filtering. Hocationperformance
begins to fall once the filtering rate goes above 50%. dpmakerandlocation
performance begins to fall rapidly once the filtering rategabove 80% while
for stimeandetimethe performance falls rapidly once the filtering rate goes/ab
90%. This indicates that for this dataset, random negatiseance filtering is a
good way to reduce execution time without harming perforceam.earning time
is a direct function of the number of instances. We can safelgte up to 50%
of the negative instances using this technique. Once tlegiffigf rate goes above
50% performance begins to degrade and above 80% perforrdagcades signif-
icantly.

Figures 6.6 and 6.7 show precision and recall for random nsadepling on
the Seminar Announcements dataset. When we consideripreaisd recall sep-
arately we see that the drop in performance comes from anfglfecision more
than from a fall in recall. For each of the four fields preamsarops sharply as
the rate of undersampling increases. §iine etimeandlocationrecall only falls
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Figure 6.3: Random negative instance filtering: Precision

when the rate of undersampling goes above 95%. Fospkakerfield recall ac-
tually rises as the rate of undersampling increases. Thirats that precision is
proportional to the level of imbalance in the dataset. Bgraig the imbalance in
the dataset we can alter the precision of the extractor itnéleecall of the system
stays relatively constant.

6.3.2 Removing Instances with Uninformative Words

Random filtering can arbitrarily improve accuracy and daseeexecution time
without hurting performance. But it is not reliable. We nesednore reliable
method. We wish to remove instances based on how useful tedpralearning.
We would like to remove uninformative instances and keeprimftive instances.
One approach to this is to remove instances whose token mgoumiative
with respect to the target class. Very frequent words arallysuninformative.
Removing the most frequently occurring words can reducdalaset size without
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Figure 6.4: Random negative instance filtering: Recall

the risk of removing informative instances. The approacliake is based on that
taken by Gliozzeet al. [22].

For a corpu<C, |C]| is the number of tokens i€ andV, is the vocabulary of
the corpugC. OCC(w,C)is the number of occurrenceswfin C.

The probability of a word occurring is

( )_OCC(w,C)+1
P = e+ v

The set of uninformative words is then given by

Up = {w|p(w) > 0 andw € V¢ }

The aim is to identify words that are frequently marked astpesexamples.
Let OCC™(w,C) andOCC~(w, C') be the occurrence of the wowdin the pos-
itive and negative examples. Then the probability of thedawging in a positive
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example is

0CCH(w,C) + 1
+ b)

p (w) =

W) ==

and the probability of the word being in a negative example is

~(w) = 0CC~(w,C) 41
S ToTENTA

Thus the set of uninformative words is given by

B p~(w) 1 1
Uas = {w ) ™ Zl‘a\/ocm(w,c?) T occ(w.0) = @} (6.1)

A word is filtered if the odds ratio betweer andp— exceeds some predefined
threshold.Z,_,, is a confidence coefficient measured from statistical tables

From here our approach diverges from that of Glioet@l. They perform
further steps. They do an exhaustive search of possiblesdara andd. An
upper bound is set on the number of positive instances that can be filtaned
« andd are selected such that they filter the maximum number of iegawhile
ensuring that the positive filter rate does not exceed

Our approach does not do an exhaustive search for valueswodd. Instead
we remove a fixed, pre-defined percentage of the negativenicss. We do not
filter any of the positive instances. We fix the valuendfand calculate for all
terms in the vocabulary according to equation 6.2.

o (w) 1 1
) Zl‘“\/ 0CCHw,C) T 0CcC(w,0) (6.2)

We then rank all words according tband set a threshold fdt such that it
covers a fixed percentage of the instances and delete altiveegastances that
have a value fof that is below this threshold. E.g. we may set our threshold so
that deleting all instances whose token Hdsss than the threshold would result
in us deleting approximately 50% of the negative trainirgjances.

2We fix o to give 99% confidence
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Figure 6.5: Filtering instances with uninformative worésmeasure

We also calculat® over all fields that we want to extract, rather than over
one field. A token is counted as occurring in a positive instafor all of the
fields we wish to extract. Thus the instances that are dele&the same for all
fields. This allows us to keep a single representation of #tas®t and we only
have to perform the instance filtering once. It also meanswiakeep instances
that are informative for one field, but may be uninformative éther fields. If
we were to perform the instance filtering on a per-field baséswould only keep
instances relevant to the particular field in question butweald need to perform
the filtering several times. Doing it once is an approximafior simplicity and
efficiency. Thus there is an upper bound on the number of ivegaistances
that are filtered. If we are extracting more than one fieldreheill always be
negative instances in the dataset as instances that atevg®$dr one field will
be negatives for other fields.

We performed some experiments on the Seminar Announcerdataset to
investigate this instance filtering approach. Figure 6dwshperformance on this
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Figure 6.6: Filtering instances with uninformative woré&gsecision

dataset using this filtering technique. The vertical ax@shf-measure while the
horizontal axis shows the percentage of negative instdiitaed. Performance
is relatively constant as the filtering rate increases. Bwigim high filtering rate

the performance remains high. This indicates that thisrtieete can filter a large
number of negative instances without harming performandes technique re-
moves instances that are not likely to occur in the positkegles. Thus they
are not likely to be close to the boundary so removing thenslb@dversely

affect the SVM performance.

F-measure gives the weighted average of precision and.r8aate f-measure
is relatively stable with increased filtering we must invgate if precision and
recall are changing as the filtering rate increases.

Figure 6.6 shows precision for the same experiment. It shibaftsprecision
falls for all four fields as the filtering rate increases. As fiitering rate goes
above 90% the drop in precision increases significantly.ldt&tionandspeaker
fields have a higher fall in precision thatimeandetime Speakemndlocation
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Figure 6.7: Filtering instances with uninformative woréecall

are the more difficult fields to learn so they probably requi@re instances to
learn well.

Figure 6.7 shows the recall on the Seminar Announcementssfdakefield
shows a large increase in recall as the filtering rate inemea$helocationand
stimefields show small increases in recall as the filtering rateeases while
etime is fairly constant.

In general precision falls as more instances are filteredracall increases.
This increase in recall cancels out the fall in precision #relf-measure stays
relatively constant. Undersampling pushes the boundaseclito the negative in-
stances and away from the positive instances. This givesaadse in recall as
we are more likely to identify positive instances. It may he tase that under-
sampling also changes the angle of the hyperplane, as bledan [3], resulting
in lower precision.
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6.4 Discussion

There are two reasons we wish to remove negative instandesfirst is to im-
prove execution time. Execution time is a direct functiortied number of in-
stances. Many of the negative instances do not contribubeit@bility to learn
our target concept. We would like to delete negative instaricat are not informa-
tive to reduce the time it takes to learn. For SVMs these wnmétive instances
are instances that are not close to the boundary betweesesla$Ve examined
two methods for instance filtering. Both methods can remawveesof these in-
stances without harming accuracy. Random undersamplingeful as long as
the filter rate is not too high. The higher the filter rate, tighlker the likelihood
of removing informative instances and reducing the acguohthe learning algo-
rithm. Filtering uninformative instances is effective e\a high rates of filtering.
It causes precision to fall slightly, but recall rises anthdasure stays constant
even with very high levels of filtering.

The second reason to remove some of the negative instantceaddress the
class imbalance problem. Removing negative instances noag the hyperplane
back towards the negative examples leading to greatei.recal

Neither of these instance filtering techniques really askltbe class imbal-
ance problem. If they did we would see performance rising asennstances
are removed. We do see some small increase in performanae filteeng un-
informative instances at very high levels of filtering. Tdtbeaddress the class
imbalance problem would require us to remove all the unmédive instances,
but to also remove some of the negative instances that ase tdhe hyperplane
without hurting performance.

6.5 Summary

In this chapter we described two approaches to instancerfdteThere are two
reasons to perform instance filtering. The first it to redu@xation time without
harming accuracy by removing instances that are not infowendor learning.
The second is to address the problem of class imbalance imdEeduce the
class imbalance to improve accuracy.
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We described two instance filtering methods and assessednipact on
the performance of the system.

An approach that removes random negative instances caceredecution
time without harming accuracy up to a certain threshold Wwimour exper-
iments was 50%. With this random approach there is a chanfikeoing
informative instances and this increases as the rate afriifféncreases.

We also showed that an approach that removes instancesokéhg that
are unlikely to occur in the positive examples can filter gédaproportion
of the negative instances without harming accuracy.

The precision of the extraction system is proportional ® lgvel of im-
balance in the data. High imbalance gives high precisionth\Windom
undersampling precision drops much more than recall asttet df under-
sampling increases.

Neither approach significantly improved accuracy but bdtweus to filter
instances for improved execution time. The approach thatgilninforma-
tive tokens is much more reliable at higher filtering levels.
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Chapter 7

A Two-level classification approach
to Information Extraction

In this chapter we extend the one-level classification aggrdo IE that we de-
scribed in chapter 4. We showed that the one-level appr@acbmpetitive with
other current state of the art IE systems. We extend thisoagprby adding a
second level of more focused classifiers that use the predscof the one-level
approach as a guide for their own predictions. This secoyet laf focused clas-
sifiers allows us to improve the recall while still maintaigigood precision. We
will call this approach EIE ;, (abbreviated to L2).

7.1 A Two-level Approach to Learning

The L1 learner builds its model based on a very large numheegdtive instances
and a small number of positive instances. Therefore the prabability that an
arbitrary instance is a boundary is very small. This givesagl@hthat has very
high precision. Because the prior probability of predigtantag is so low, and
because the data is highly imbalanced, when we actual dicpeethg, it is very
likely that the prediction is correct. The L1 model is theref much more likely
to produce false negatives than false positives (high gicag).

The intuition behind the two-level approach is as follows$ LA, the start and
end classifiers have high precision. To make a predictioth the start classifier

80



Learning

L1 Instances
T LZ end Instances

There will @ talk by Bill Wescott at the Engineering and ...

L2 start Instances

Extracting L1—= start

l

There will @ talk by Bill Wescott at the Engineering and ...

™ 127

L2—= is this an end?

Figure 7.1: L1 and L2: An example

and the end classifier have to predict the start and end riagggcln many cases
where we fail to extract a fragment, one of these classifiedam prediction, but
not the other. Level 2 assumes that these predictions arect@nd is designed
to identify the starts and ends that we failed to identifyeatl 1.

The L2 models are learned from training data in which thergsiobability
that a given instance is a boundary is much higher than fotthiearner. This
“focused” training data is constructed as follows. Whenlding the L2 start
model, we take only the instances that occur a fixed distaafmrdan end tag.
Similarly, for the L2 end model, we use only instances thauoa fixed distance
after a start tag.

For example, an L2 window of size 10 means that the L2 starteiisduilt
using only all those groups of 10 instances that occur bedarend-tag in the
training data, while the L2 end model is built using only thasstances that occur
in the 10 instances after a start tag in the training datae Mt these L2 instances
are encoded in the same way as for L1; the difference is sithplythe L2 learner
is only allowed to look at a small subset of the availablenireg data.

Fig. 7.1 shows an example of the instances used by L1 and ltRaniiboka-
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head/lookback of 3. In this example the token ‘Bill’ is tharstof a field and the
token ‘Wescott' is the end of a field. When building the L1 sifisrs we use all
the available instances. When building the L2 start modelseethe end token
and the 3 tokens preceding it. When building the end modelsedhe start token
and the three tokens following it. Note that these L2 instarare encoded in the
same way as for L1; the difference is simply that the L2 leaisienly allowed to
look at a small subset of the available training data. Wheraeting, the L2 end
classifier is only applied to the three tokens following tbken which L1 tagged
as a start and the token itself. Similarly the L2 start clgssis only applied to
instances tagged as an end by L1 and the three precedingstoken

This technique for selecting training data means that thenb@els are likely
to have much higher recall but lower precision. If we wereltoddy apply the L2
model to the entire document, it would generate a lot of fatsstives. Therefore,
as shown in Figures 7.1 and 7.3, the reason we can use the L&l todthprove
performance is that we only apply it to regions of documeritene the L1 model
has made a prediction. Specifically, during extraction,ltBeclassifiers use the
predictions of the L1 models to identify parts of the docuftrtbat are predicted
to contain fields.

Figure 7.2 summarizes the learning process for this twetlearner (which
we call B.IE;,). As before (with EIE;;) the training documents are converted
into a set of training instances that are used to build the lotets and a set
of start/end pairs used to build the histogram for the ta¢chea. There is then
a combination and reduction step to get the training ingsmsed by L2 from
those used by L1. The training instances from L1 are reducdbat we only
use instances that occur a fixed distance after a start orebafoend. They are
combined in that we use the L1 start instances to pick the ddrestances and we
use the L1 end instances to pick the L2 start instances. Ordeawe identified
the L2 start and end training instances we use them to bugld ghstart and L2
end models.

Figure 7.3 summarizes the extraction process for the twekégpproach. Given
a set of documents that we want to extract from, we convesetdecuments into
a set of instances. We apply our L1 models for start and erfteetinstances and
generate a set of predictions for starts and ends. The L1gtists are then used
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Figure 7.2: L2 Learning: Overview

to guide which instances we apply the two-level classifierdWe use the predic-
tions of the L1-end model to decide which instances to agmyli2-start model
to, and we use the predictions of the L1-start model to deaibieh instances
to apply the L2-end model to. Applying the L2 models to theestdd instances
gives us a set of predictions which we pass to the tag-matotgat our extracted
fields.

The L2 approach is based on the assumption that L1 has higisiarebut that
recall could be improved. In order to extract a fragment, wstnidentify both its
start and its end. However in many cases we identify the sfatfragment but
not the end or vice-versa. In these cases we fail to extradrdigment.

The start and end classifiers are likely to have high pretibecause of the
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imbalance in the data. We assume that the L1 predictionsighepinecision and
that if we predict a start or an end it is correct. Thus if weniifg a start but failed
to identify the corresponding end, then there is likely tabainidentified end in
the tokens following the start.

The intuition behind the two-level approach is that we useuhmatched L1
predictions (i.e. when we identify either the start or the &at not the other)
as a guide to areas of text that we should look more closely\&.use more
focused classifiers that are more likely to make a prediaimareas of text where
it is highly likely that an unidentified fragment exists. Beeclassifiers are more
likely to make predictions due to a much lower data imbalaswhey are only
applied to instances where we have high probability of anfrexgt existing.

As the level of imbalance falls, the recall of the model riggsle precision
falls. We use a L2 lookahead/lookback of 10 for our experitsien the imbalance
of the L2 data is approximately 10:1. This is much lower tHaniimbalance in the
L1 classifiers which can anything from 100:1 to 1000:1 depgndn the dataset.

This enables us to improve recall without hurting precidgndentifying the
missing complementary tags for orphan predictions. If weehB00% precision
at L1 then we can improve recall without any correspondirmgpdn precision. In
practice, the drop in precision is proportional to the numifancorrect predic-
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tions at L1.

7.2 Evaluation

We evaluated this two-level approach on the three benchiiadatasets using
the same methodology as previously.

7.2.1 ComparingL2to L1l

Figure 7.4 shows the Precision of this two-level approachpared to the preci-
sion of the one-level approach on the three benchmark data®ae almost all of
the fields, L2 has lower precision than L1.

Figure 7.5 compares the recall of L1 and L2. In contrast teipren, recall
increases between L1 and L2 for all fields. The L2 approachltes higher
recall.

Figure 7.6 shows the f-measure of the L1 and L2 approachesiaweshown
already that precision falls and recall increases when w&.2sWe are interested
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in whether the increase in recall in enough to offset theifiglirecision when we
consider f-measure. F-measure for L2 is higher than for ltlhmost all fields.
In fact only one of the 31 fields has higher f-measure at L1.rirany fields the
increase in f-measure at L2 is substantial.

We would like to determine whether the increase in f-meastiie? is sta-
tistically significant. We cannot do statistical significantesting when we are
comparing against the published results of other systenmsveMer because we
have controlled the L1 and L2 experiments and all variabiethé experiment
are equal (so the data is paired), we can use a paired t-testttéor statistical
significance.

Figure 7.7 shows the results of the paired t-test for stedissignificance for
the hypothesis that the f1 at L2 is higher than the f1 at LEor all 31 fields, L2
Is never statistically significantly worse than L1. On 21 loé¢ 31 fields the L2
approach is statistically significantly better than the ppraach.

We conclude that the two-level approach gives improvedoperdnce over a
one-level approach. Adding a second level of biased classififten gives sub-

1We used a one-tailed test witt+0.01.
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field |Significan] field |Significan
speaker| yes reg_exp yes
location no des_exp no
stime no req_degree yes
etime yes |ldes_degree no
id no post date  no
title yes acquired yes
company| no purchasef yes
salary yes seller yes
recruiter no acqabr yes
state no purchabr| yes
city yes sellerabr| yes
country no acqgloc yes
language| yes acgbus yes
platform yes diramt yes
application yes status yes
area yes

Figure 7.7: F1 at L2 is statistically significantly betteathF1 at L1
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Figure 7.8: L2 Precision for the Seminar Announcementssghta

stantial improvement in performance and never degraddsrpgance. L2 gives
lower precision but compensates for this by giving an evegelaincrease in re-
call.

We saw in chapter 6 that undersampling uninformative tokansed precision
to fall and recall to rise. But the fall in precision was offbg the rise in recall so
f-measure remained relatively constant. With this tweelepproach the increase
in recall is greater than the fall in precision. Thus f-meads generally higher
and never lower than the one-level approach.

7.2.2 Comparing L2 to other IE systems

We compared the two-level approach to the other IE systems.

Figure 7.8 shows the precision on the Seminar Announcenuaitset of
ELIE >, compared with other IE systems. Precision faneg, is lower than for
ELIE.; on all 4 fields. Even though precision for L2 is lower than fdr, lit is
still competitive with each of the other algorithms. It ha&tend-best precision
for two of the 4 fields and is close to best for the other two.
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Seminar Announcements - Recall
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Figure 7.9: L2 Recall for the Seminar Announcements dataset

Figure 7.9 shows recall forlEE ;, on the Seminar Announcements dataset.
ELIE;» has the highest recall of any of the systems on 3 of the 4 fi€ldsall for
speakeandlocationis much higher than for any of the other systems.

Figure 7.10 shows f-measure for the Seminar Announcematdset. EIE
has significantly higher f-measure than any of the compesiystems on the
speakerandlocationfields (these are the more difficult fields). It is also among
the top performing systems on the other two fields.

Figure 7.11 shows precision for the Job Postings datasepaced to other
IE systems. In generalllE ;, is competitive with the other IE systems although
itis outperformed by EIE ;;. On thesalary, application areaanddesired degree
fields BLIE ;5 has the worst precision of any of the systems. On some of tter ot
fields it is among the best performing while in general it ishia middle.

Figure 7.12 shows recall for the Job Postings dataset ;k is the top per-
forming system on several fields and is among the top perfaysystems on most
fields.

Figure 7.13 shows f-measure for the Job Postings dataset.; Fis the top
performing system on 6 of the 17 fields. It is among the topquaring systems
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Seminar Announcements - F-measure
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Figure 7.10: L2 F-measure for the Seminar Announcemenésdat

on several other fields. It is the worst performing system pe of the fields
(desired degree). (LP)s the best performing system on 4 fields and worst on 1
field. The results for EIE;», on multi-valued fields (e.gplatform, application
area) are probably understated due to the conservative way teawaluate our
system. The other systems probably use a form of OSO evatudior fields that
occur many times within documents the difference betweenQBO and ASO
evaluations can be large.

Figure 7.14 shows precision on the Reuters Corporate Aitipuis dataset.
ELIE,’S precision is competitive with Rapier on this dataset. sTikia difficult
dataset for extraction and performance is lower than onrathsets. BEE ;'S
performance indicates that when performance is podg g has the potential to
make substantial improvements.

Figure 7.15 shows recall and figure 7.15 shows f-measureifm k for the
Corporate Acquisitions datasetLIE ;, is the best performing system on most of
the fields. On most fields its performance is substantialtteb¢han Rapier and
HMM. HMM matches it one field and outperforms it on one field.

Figure 7.17, Figure 7.18 and Figure 7.19 summarize the padoce of EIE ,
against that of other IE systems. The horizontal axis shbwgerformance of
ELIE ;» while the vertical axis shows the performance of the conmesystem.
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Job Postings - Precision
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Figure 7.11: L2 Precision for the Job Postings dataset
Job Postings - Recall
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Figure 7.12: L2 Recall for the Job Postings dataset
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Job Postings - F-measure
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Figure 7.13: L2 F-measure for the Job Postings dataset
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Figure 7.14: L2 Precision for the Reuters Corporate Actjoiss dataset
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Figure 7.15: L2 Recall for the Reuters Corporate Acquisgidataset
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Figure 7.16: L2 F-measure for the Reuters Corporate Adipns dataset

Each point represents the performance ok, vs a competitor on a single field.
Points that occur above the diagonal line indicate that dinepetitor system is do-
ing better while points occurring below the diagonal lindigate that EIE ;5 iS
doing better.

On the precision graph, the points are clustered aroundaigexal. For recall

and f-measure, the majority of points are below the diagonalustered close to
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Figure 7.17: L2 Precision summary
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Figure 7.19: L2 F-measure summary

it. We conclude that BE;, generally outperforms the other IE systems on the
three benchmark IE tasks.

7.3 Discussion

The instance filtering techniques described in chapter &icamficantly improve
execution time without affecting performance but they dé significantly im-
prove the accuracy of the classifiers. Random undersamgdingmprove or hurt
performance depending on whether it deletes instanceardatformative or not.
The second instance filtering technique deletes instahe¢sdontain tokens that
are uninformative with respect to the positive class. Tis¢ainces are likely to be
instances that are not close to the boundary so that delémg should not affect
accuracy.

Table 7.20 shows details of the errors made hyeE For all fields in the three
benchmark datasets we show the ratio of false positivesde feegatives (FP:FN).
It also shows the percentage of false positives that wetgaprcorrect and the

95



L1 L2

Dataset Field | FP:FN%FP,;|%FN,;||FP:FNY%FP,;|%FN,;
SA | speaker|| 0.17| 22 62 1.05( 17 8
SA | location || 0.19| 76 67 051 75 20
SA stime 0.2 27 86 4.72 9 36

SA etime 0.05| 64 92 0.93| 36 18
Jobs id 0 0 100 0 0 100
Jobs title 029 71 58 09 | 56 23
Jobs | company|| 0.14 9 10 0.27| 14 2
Jobs | salary 0.4 76 68 0.66| 68 43
Jobs | recruiter || 0.41| 22 22 052 21 11

Jobs state 0.79 9 24 1.11 9 6
Jobs city 0.56 1 28 0.95 1 1
Jobs | country || 0.36 0 6 0.44 0 3

Jobs | language|| 0.25| 41 45 0.52| 30 10
Jobs | platform || 0.27| 43 43 0.54| 37 10
Jobs |application| 0.18| 23 27 0.38| 14 3
Jobs area 0.15| 34 25 041| 25 6
Jobs | req_exp || 0.28 8 41 0.92 6 9

Jobs | des_exp|| 0.09| 100 10 0.23| 54 12
Jobs |req_degreg 0.21 0 34 0.53 2 1
Jobs |des_degrege 0.04 0 10 0.51 5 0
Jobs | post_datg| 4.8 0 100 0 0 0
Reuters acquired|| 0.05| 32 32 0.45| 18 3
Reuterspurchaser| 0.13| 10 35 0.7 8 3
Reuters seller 0.06 1 6 0.24 2 0
Reuters acgabr || 0.09 9 14 0.22 8 1
Reuters purchabr|| 0.07 5 11 0.2 8 1
Reuters sellerabr|| 0.05 1 4 015 2 0
Reuters acgloc || 0.07| 16 27 0.46| 16 3
Reuters dlramt || 0.24| 27 53 139| 15 14
Reuters status || 0.22| 23 35 087 21 8

Figure 7.20: EIE error analysis

percentage of false negatives that were partially predicte
For a false positive to be partially correct meanseEextracted a fragment,
but that it was correct at only one end (either the start orweasl not predicted
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exactly). These kinds of predictions are still useful in aqgpical setting and a
less conservative method of evaluation might give someatc®dthese kinds of
errors. On several fields, a large proportions of the ern@®fthis form.

For a false negative to be partially predicted means that foagment that we
failed to extract, we predicted either the start or the emcectly, but may not have
predicted the other. These are the kinds of errors thatttteilthe improvement
shown by L2 over L1. In general L2 gives a large reduction esthpartial errors.

An investigation of the errors thatLEE produces reveals that at L1 most errors
are false negatives. Those that are false positives ardynadsivo kinds. The
first are as a result of using exact matching for evaluatidrere we have tagged
one end of the field correctly but not the other. The secondroas a result of
labelling errors on the data where we extract somethingghatild have been
labelled but was not.

The ratio FP:FN shows that at L1, most of the errors are fatgatives, while
at L2 we generally see an increase in false positives andugtied in false neg-
atives. This corresponds withLEE’s observed behaviour of high precision at L1
and high recall at L2.

ELIE;; outperformed the systems that it was compared against otfialos
in terms of recall or f-measure. If high precision is reqditeen E.IE;; can be
used. We evaluated our system conservatively so its pegiocenmay be under-
stated in relation to competitors.

The L2 learner consistently improves recall while keepirecsion high. On
more difficult fields the improvements are generally largéte L2 classifier al-
ways improves recall and usually keeps precision high eméaignprove F1.

It is likely that the accuracy of HE overall has several sources. Since the
L1 classifier alone often gives better performance thanrdthalgorithms, we
conclude that the use of Support Vector Machines as theitepaigorithm and
the features that our systems uses gives rise to substampiedvement compared
to the specialized learning algorithms and narrower feasets used by most IE
algorithms. Secondly the two-level classification that vaeendescribed can give
significant increases in performance. It increases redailewnaintaining good
precision. In many cases, L2 improvesiEs L1 performance substantially.
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7.4 Summary

In this chapter we described a two-level classification agpin to IE. This ap-
proach added a second phase to the one-level classificaifpoach that was
previously described. The second phase is designed tcasemecall. We find
that often false negatives are “almost” extracted (thet $iatr not the end is ex-
tracted or the end but not the start). In the second phage ik trained to detect
the end of a fragment given its beginning or the beginningfohgment given its
end.

We evaluated this two-level approach on the three standardehchmark
datasets. In comparison to L1 it improves recall at the espesf precision.
However the drop in precision is smaller than the rise inltestal2 improves
f-measure on nearly all fields. The two level approach carrévgrecall while
maintaining high precision. We showed that the f-measuhéegsed by the two-
level approach was consistently better and never worsdghthtiaichieved by the
one-level approach. On 21 of the 31 fields that we evaluated the two-level
approach was statistically significantly better than the-lmvel approach.

ELIE ., IS among the top performing systems of the IE systems thatone c
pared it to. It is the best performing algorithm on the Semianouncements
and the Reuters Corporate Acquisitions datasets. It isstemsly one of the best
on the jobs dataset.
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Chapter 8

The Pascal Challenge

8.1 Overview

The Pascal Challenge took place in November and Decembdr 208as spon-
sored by the Pascal network and was organized mainly by MNeibh from Uni-
versity of Sheffield. The aim of the challenge was to asses®muMachine
Learning methods for Information Extraction.

In chapter 3 we discussed the shortcomings of the methodktassvaluate
previous IE systems and the lack of a standard evaluatiohadetogy which
would enable us to meaningfully compare the results of @iffelE systems. The
Pascal challenge aimed to define a standard methodologydtuating IE sys-
tems and perform tests of different systems in controllguberents to determine
which aspects of the system contributed to their perforrmanc

The organizers annotated a dataset and specified an evaluagithod. All
systems were required to use the same basic feature-spto&essing was done
using the GATE preprocessor which gives token, POS and grdipbiic features.
It also provided a small number of named entity featuress@oerlocation, date).

8.2 Pascal Challenge Dataset

The Pascal Challenge dataset [24, 25] consists of 1100 majpdpers (CFPs)
comprising 850 workshop CFPs and 250 conference CFPs . dipsi€ divided
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=?xml version="1.0" encoding="UTF-8" 7=

<DOC=
<DOCID=1.5-train-3-5-1-CSIT_1999.key<DOCID>
<TEXT>

1st announcement andCALL FOR CONTRIBUTIONS TO
CsIT

The =warkshopname=Workshop on Computer Science and Information Technologies</workshopname:s

CSIT will be a forum for presentation of new results inresearch, development, and applications in computing and information. The organizers expect
both practitioners and theorists to attend.

CSIT will be held from <workshopdate=January 18th to 22nd 1899</workshopdates, in <workshop Moscow, Russia-

Submissions to the workshop should be send by=workshoppapers ssiondate=September 30<'workshoppapersubmis date=, in the form of
extended abstractsor full papers, to

VEW@na.vuag.lxb

See for full conference details:

httpeimsu jurinfor, rw/CSIT/CSITI8CHP-letter.htm
<workshophomepage=http:/msu.jurinfor.ru/CSIT/</workshophomepage:=
dobot oottt

Institute for Contemporary Education &quot;JurinfoR-MSUS&quot;,
Vorotnikovsky per, 7

Moscow, 103006 Russia

Phone: +7 (085) 939-1885

Fax: +7 (095) 939-1885

E-mail: vew @rm.run.of

<TEXT=
<DOC=

Figure 8.1: An example Call for Papers

into sub-corpora: training corpus (400 workshop CFPs},degpus (200 work-
shop CFPs) and enrich corpus (250 workshop CFPs and 250renaéeCFPS).
Most of the documents are from the area of computer sciertéhartraining and
test sets are temporally separate. We used only the traiteahdorpora.

The annotation process took place over the course of sewerghs. Five ver-
sions of the training corpus were released to the partitgdagfore the corpus was
finalized. Each new version corrected errors that were ifigshin the previous
version.

Figure 8.1 shows an example call for papers. The documertilssrataset
tend to be more structured than the other benchmark data3éisre are also
strong relationships between most of the fields. For examplikshopacronym
usually occurs just afteworkshopnamer he various dates often occur in a certain
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Field ‘train‘ tesq Examples

workshopname 543|245 Second International Workshop on
Time Oriented Business Information Systems
workshopacronym 566(243 ZoblS 96, RTSS '98
workshopdate 586|326 June 8-9 2000, September 1st-2nd
workshophomepage 367|215 http://www.cs.virginia.edu/wecwis2000
workshoplocation 457|224 Pisa, Italy ; Cottbus ; Cottbus, Germany
workshoppapersubmissiondate | 590|316 March 1; June 3, 1996
workshopnotificationofacceptenceds281(19Q Friday 27th March 1998
workshopcamerareadycopydate| 355|163 Mar. 24, 2000
conferencename 204| 90|15th International Conference on Conceptual Mode]ling
conferenceacronym 420187 ACL/COLING '98, ECAI-2000
conferencehomepage 104| 75 www.acm.org/sigs/sigmm/MM99

Figure 8.2: Details of the Pascal Challenge dataset

order. e.gworkshopnotificationofacceptencedatially occurs afteworkshop-
papersubmissiondate

Figure 8.2 shows the fields along with examples and the cesoes of each
field in the training and test datasets. There are 11 fieldsla@img to the work-
shop and 3 relating to the conference. All the fields are sivglued fields. Many
of the fields in this dataset are very similar. There are 4 fialdgs. These often
occur together in a document and use the same date formatdakbe must be
disambiguated using the limited context around each. &rigjlthere are two
name fields, two acronym fields and two homepage fields, orfefeaworkshop
and conference.

8.3 Evaluation

We submitted a single entry to the Pascal Challenge. We usaddow length

of 3 and randomly undersampled 50% of the negative instandest systems
submitted more than one entry. The full set of results ardabla at the Pascal
Challenge web-site [2]. The web-site states that particgeay only reproduce
their own results and their rank in comparison to other systerable 8.3 shows
the rank of our system for each field. When reporting the raalonly count the
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‘ Field ‘ Train ‘ Test ‘

‘ ‘f-measur%anl{ ‘f—measur*ianl{

workshopname 55.5 3 43.9 5
workshopacronym 68.3 | 4 34.7 8
workshopdate 70.9 5 45.7 8
workshophomepage 62.8 5 41.7 9
workshoplocation 55.5 5 38.7 8
workshoppapersubmissiondate | 70.5 6 52.7 9
workshopnotificationofacceptancedate71.9 7 58.8 9
workshopcamerareadycopydate| 68.7 7 44.1 |10
conferencename 66.5 2 48.3 5
conferenceacronym 69.1 2 20 10
conferencehomepage 63.9 2 5.2 10

Figure 8.3: EIE’s rank performance on the Pascal Challenge

best performing of each competitor system’s entries (sorstess submitted sev-
eral entries with different parameters). On some of thedielar entry is among
the top performers for the train set. However our systemoper$ poorly on the

date fields. On the test set we perform much worse than we dildeotnain set.

ELIE performed poorly on the date fields. An examination of thersrre-
vealed that in many cases we identified the date but as thegwkionl of date.
Often we would have multiple field predictions for a date araild have identi-
fied it as the correct type of date but would have also prediittas another type
of date with higher confidence.

The best performing system on average was Amilcare, sudnhtitg the Uni-
versity of Sheffield group. This system is based on the {laR)orithm. It had
exceptional performance on the date and acronym fields wperformance was
mediocre on some of the other fields. For example, on the é¢#t\was best for
three of the 4 date fields and both the acronym fields. Ordinéerenceacronym
field it had an f-measure that was 41% better than the secaedgkystem while
for workshop acronym, its recall was 25% better than thersgq@baced system.
The reason that (LPutperformed all the other systems is because of its ability
to build rules based on the relationship between differefdsi There are strong
relations between fields in this dataset.
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Another system that was one of the top performing was thamngtdd by
ITC-IRST. This was a one-level SVM approach that is simiaELIE ;. It im-
plemented the instance filtering strategy of Glioezal

ELIE performs poorly on this task. There are several reasonshéopbor
performance. The first is that this dataset has very high lamga. This means
that recall will be low at L1 so there is not much potentialifoprovement at L2.
One of the systems addressed this problem by aggressivetynfy instances. Our
system does not filter instances in a manner that will addhesslass imbalance
problem. HRIE performs worse on the test data than on the train data. This is
also a problem caused by the large imbalance in the datasetm®dels learned
on the dataset have high precision due to the very high aabalance. These
high precision learners don't transfer well to the test sketta This also caused
overfitting of the training data. Because of the high cladsalance we only make
positive predictions for instances that are very close ®tpe instances from the
training data.

The second reason is thatiE;, learns each field independently. It is not
capable of learning contextual information between fielldsdeals poorly with
the date fields in this dataset. These fields are highly ctusé&xThe occurrence
of one of them strongly affects the probability of anothecurcing. Our system
identified most of the dates but it often confuses one typetd dith another.

8.4 Discussion
The stated aims of the original proposal [1] were:

1. Define a methodology for the fair comparison of machinenieg algo-
rithms for IE.

2. Define a publicly available resource for evaluation thiditexist beyond the
lifetime of the challenge.

3. Perform actual tests of different algorithms in cont&dlkituations so as to
understand what works and what doesn't.
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The first aim was met by defining a methodology for scoringaetions and defin-
ing splits to be used for testing and training the data. Tloeisg methods that
were decided on were the same scoring methods that we chose twehen evalu-
ating our system. No credit is given for partial matches. 3ysem must extract
all occurrences of the instances to get full credit (ASO eatabn). This is a con-
servative and fair method of evaluating an IE system. It igdabthat all future

systems will adopt this scoring methodology for evaluation

The Pascal Challenge resulted in another dataset being avadable to the
IE community. This dataset is quite different to the otheb#ichmark datasets.
The documents are longer and there are strong relationsebetaome of the
fields in the dataset. This is a valuable resource and willdaedul for evaluating
IE systems in the future. Unfortunately the annotationgHtiertest data have not
been made available to the community - only the annotationthe training set
are currently available. This may hamper the adoption af daitaset as another
standard benchmark.

The third stated aim of the challenge was to perform corddotests of the
various aspects of the IE system to understand what aspmisbuite to perfor-
mance. The feature-set was fixed for the challenge so thaystéms had to use
the same feature-set. However this does not allow us to cantpa learning al-
gorithms of the other systems. Instead it only excluded dmeamy variables that
can cause performance differences between the systente W@édon’t separate
any other aspect of the IE system it merely punishes systathgyaod feature-
sets and benefits systems with poor feature-sets. The &&dmaing algorithm, the
way relational features are handled, the length of windawcfeating relational
features, instance pruning, attribute pruning, postgseing of predictions, etc
all contribute to the performance. Fixing the feature-setshot really make for a
more valid comparison as there are still so many other viesaietween systems
that can contribute to performance. No other aspects oBlsy$tems were fixed
and the contribution of features to performance was not eéxaan

(LP)? was the best performing system on average. A large part pgit®r-
mance came from its ability to learn rules about relatiortsvben fields. This
gave it high performance on the data and acronym fields ashestrong rela-
tional dependencies on other fields.
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8.5 Summary

In this chapter we described the Pascal Challenge and disd¢UusIe’s perfor-

mance in it.
The Pascal Challenge identified two shortcomingsioEE

e |t fails when there is very high class imbalance.iEEdoes well when the
class imbalance is moderate as it takes advantage of higlsiome models
at level one to improve recall at level 2. However when classalance is
very high, recall at level one becomes so low that there ismath scope
for improvement at level 2.

¢ It does not take advantage of relations between differelusfieE IE as-
sumes that all fields are independent and doesn’t use therue®f one
field to help learn the presence of another. On the Pascalatdteere is a
strong relationship between some of the fields and takingradge of this
information can improve performance.

The Pascal Challenge highlighted the variability in perfance of different IE

systems. Systems that performed well on some fields pertbpoerly on others.

It also highlighted the effect of data imbalance on perfaroeg the importance of
relational information between fields and the need for a vaide varied testbed
of IE datasets, each challenging different properties @fhsystems.
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Chapter 9

Multi-field Contextual Extraction

Level 1 and Level 2 extract a single field at a time. They treaetion of differ-
ent fields as independent tasks. However on some tasks shesriong relation-
ship between the occurrence of different fields. The twellapproach described
so far does not exploit this contextual information. On thsdal dataset, (LP}
ability to learn contextual rules based on the occurrenogtar fields gave it a big
advantage on fields that have a strong contextual dependermtber fields. Our
approach of treating all the fields as independent workederstandard bench-
mark datasets but failed for the Pascal data. By assuminalihthe fields are
independent we fail to exploit the structure that existsvieen the data.

Figure 9.1 shows field-pair probability data for the Semidanouncements
dataset. For field pair (f1, {2y s, 1 gives the probability of the next field being
f2 given that f1 has occurred. If we identify a field as beingpaakerthe most
probable field to follow isstimewith probability 0.63. The most likely fields to
follow stimeis etime The most likely field to followetimeis location This shows
that many of the Seminar Announcements have a certain ambatrticture with
thespeakembeing listed first, thetimeandetimenext and théocationbeing listed
last. It is twice as likely that aetimefollows anstimethan anstimefollows an
etime There are some combinations that are very unlikely, e.weiidentify a
speakefrthe next field is highly unlikely (P=0) to be atime but very likely to
be astime(P=0.69).

Figure 9.2 show the 10 most likely field pairs for the Job Posidataset. The
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| f1 [ 2 [Ppyp
speaker stime | 0.63
etime |location 0.6
locationspeakef0.51
location stime | 0.47
stime | etime | 0.44
stime [location 0.31
speakerspeaker0.27
etime | stime | 0.23
etime |speaker0.18
stime |speakef0.15
stime | stime | 0.1
speakejlocation 0.1
locationlocation 0.02
location etime | 0.01
etime | etime| O

speaker etime| O

Figure 9.1: Field-pair probabilities for the Seminar Annoements dataset

| f1 [ 2 [Py
country state |0.58
state city 0.55
recruiter | country | 0.39
area area |0.37

platform | platform | 0.37
applicationapplication 0.36
language| language| 0.33

id country | 0.28
company| city 0.24
company| company| 0.23

Figure 9.2: The 10 most likely pair sequences for the Johifystiataset

country, stateandcity fields are very likely to co-occur together in that order. If
we identify anareafield, the most likely next field is anotharea This is also the
case for thelatform applicationandlanguagdields. This is because these are all
multi-valued fields that tend to occur in lists in the datagey. a job application
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1]

2 [Pras

status

acquired

0.58

sellercode seller

0.43

purchabr

acqabr

0.43

acqcode

purchase

0.43

purchaser status

0.37

purchcodgurchase

0.36

acqabr

purchabr

0.35

dlramt

purchabr

0.32

dlramt

acqabr

0.29

purchcods

acqabr

0.28

Figure 9.3: The 10 most likely pair sequences for the Re@erporate Acquisi-
tions dataset

may list all languages required in a sequential list. Theeenaany combinations

of fields that are very unlikely in this dataset, etgle is never followed by the
post_date the title tends to occur near the beginning of documents while the
post_datdends to occur near the end.

Figure 9.3 show the 10 most likely field pairs for the ReutevgaBrate Acqui-
sitions dataset. From this we see thttusis likely to be followed byacquired
and purchaseris likely to be followed bystatus This indicates that some sen-
tences will be structuredurchaser- status- acquired An example of such a
sentence is ‘<purchaser>General Partners Inc.</purchaséd it was <status>
prepared to raise its bid</status> for <acquired>GenCaquuired>.’

Figure 9.4 show the 10 most likely field pairs for the Pascalllehge dataset.
There is quite a bit of structure in this dataset. For examiplere identify a
workshopnotificationofacceptencedates very likely that the next field will be a
workshopcamerareadycopyddt=0.84). This indicates that in the training data,
for 84% of occurrences oivorkshopnotificationofacceptenceddaite following
field is workshopcamerareadycopydafeEhere are many other strong relations in
this dataset, many involving the date and acronym fields. cdmgerencename
field is most likely to be followed bgonferenceacronypworkshopnamées most
likely to be followed byworkshopacronyrandworkshoppapersubmissiondase
very likely to be followed byworkshopnotificationofacceptencedate
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f1 2 [Praisi]

workshopnotificationofacceptence ateworkshopcamerareadycopydate‘ 0.84
workshoppapersubmissiondate (workshopnotificationofacceptencedat@.65
conferencename conferenceacronym 0.5
workshoplocation workshopdate 0.45
workshopcamerareadycopydate workshopdate 0.36
workshopacronym workshopacronym 0.26
conferencehomepage workshopname 0.26
workshopname workshopacronym 0.26
workshopdate workshoplocation 0.26
workshopname workshopdate 0.25

Figure 9.4: The 10 most likely pair sequences for the Pastaket

The pair-probabilities for these datasets indicate thexetin an innate level of
structure in the documents and many fields are strongly tughy co-dependent
and tend to co-occur together.

However these pair-probabilities do not tell the whole wtoFhey indicate
that there is a strong structural relationship betweeranefields. However the
strength of that relationship also depends on the distagtveden the fields in the
document. In the Pascal dataset the fields are likely to ogenyr close together
in the document whereas in the Seminar Announcements tat@decationis
likely to follow the etimebut it is not as likely to occur directly after thetime
Thus the relationship between fields is stronger when theikely to occur
close together in a particular sequence than when they siréikaly to occur in
sequence.

Our system treats the fields as independent. In doing sdstttatake advan-
tage of any structure between fields in the dataset. In tlaipteln we discuss some

enhancements tolEE that can take account of contextual information between

fields.

9.1 Adjusting Prediction Confidence

Because we treat the extraction of each field as indepenrakd, tit is possible for
extractions of different fields to overlap or for the samement to be extracted
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Figure 9.5: Multi-level multi-field extraction

as different fields. This is not generally a problem on the Bchenark datasets.
However on the Pascal datasetlE often extracted multiple date fields for date
fragments because the dates are all similar and tend to ctuse together in
the document. It is not possible for a fragment to be more tranfield so it is
desirable to eliminate these ambiguous predictions. Whemake ambiguous
extractions, i.e. we make more than one field prediction liergame piece of
text, we must choose one of the predictions and eliminatetiners. We choose
the extraction with the highest confidence based on the xtaieprobability.
For each ambiguous extraction, we choose the field that i$ likef/ given the
previous field.

9.2 Adding Mult-Field Contextual Features

In order to take advantage of the structure of the documewtsedations between
fields, we add multi-field contextual features. For eachaimst in the dataset,
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we add two features: one for the previous field and one for éx¢ field. When
learning our models we use the annotations in the dataseldtéeatures to each
instance for the next occurring instance and previous ocaumstance. When
extracting we first run our two-level classifier for each fialtdl use the predic-
tions for these classifiers to add previous instance andmgbgince features to the
dataset. Once these features have been added, we re-ruvotlevel learner on
the dataset with these new features.

Figure 9.5 summarizes this process. In the training phadeare a two-level
model for each field with the addition of features for pred@and next fields.
When training these features can be taken from the annogatibhe extraction
process is more complex. From our test documents we gereesateof instances.
We pass these instances to the two-level model for each digjdtta set of extrac-
tions for each fields. We resolve any ambiguous extractmessure that different
fields don’t cover the same text. We then use these extradiiosdd new features
to each instance for previous and next fields. We then pasiatiaset with these
new features back to each of the two level models and repeabdinaction pro-
cess with the contextual features present. We could itelgitiepeat this process
but we only do it once.

9.3 Evaluation

Figure 9.6 shows the performance of this multi-level apphoan the Seminar
Announcements dataset. The addition of the multi-fielduiesst gives an increase
in performance for thatimefields but not any of the others. The f-measure for
thelocationandetimefields drops when we add the relation features.

9.4 Discussion

In this chapter we described a simple approach to extendirng 6 take account
of relations between different fields. This approach didgieé any significant
improvement on the SA dataset. We showed by measuring theudiabilities

that there is some inherent structure in the dataset buagisoach fails to take
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Figure 9.6: F-measure for the Seminar Announcements datasgy multi-field
extraction

advantage of this structure.

The features used may be too coarse and adding them to alhaest may be
adding noise to the data. The features only represent thdiakkthat occurred
but don’t represent the distance to that field. Fields thatioadjacent to each
other are represented in the same way as fields that occupdat. &A more so-
phisticated approach might break this feature down intersg\different features
that represent how close the field occurred to the previois dieonly add the
contextual features if a field occurs close to another.

Another problem is that that when training we use the anmutatfrom the
training data, so there will be very little noise, whereasdxtracting we use the
predictions from L2 so there will be lots of noise.

9.5 Summary

In this chapter we discuss the benefit of using multi-fieldtertual information
about multiple fields to improve extraction. We motivatesthy giving field-pair
probabilities for the various datasets. These probatslghow that there is strong
contextual dependence between fields in the documents aradbility to use this
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information could give large potential for improving pemftance.

We tried a simple method of adding features for relationsvben fields and
found that it didn’t improve performance. A more sophidiechapproach is re-
quired to take advantage of contextual structure betwektsfie
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Chapter 10
Conclusion

In summary, we developed an approach to |IE that uses stakldenttine Learning

techniques. We investigated the various components osfsitem and analyzed
their contribution to the overall performance of the systéife presented a new
two-level classification approach to IE that achieves sbétie-art performance.

10.1 Discussion

There are many aspects that contribute to the performanae t# system. We
have investigated the different aspects separately aedsex$ how important their
contribution is to the overall performance of our IE system.

We discussed various methods of evaluating IE systems ashtbrtcomings
of each. We used the most conservative method to evaluatausystem.

Each IE system has different aspects that contribute tef®pnance. Gen-
erally they do not analyze in detail which components cbaotg to the overall
performance of the system. It seems likely that for BWI, himgscontributes
strongly to its performance. It seems unlikely that the $emrecise rules that
it learns would perform as well without the boosting step.o&mg is a general
technique that could be applied and incorporated into arthe@lE systems de-
scribed. With (LPj) it seems likely that a large part of its good performance me
from the contextual rules and the ability to learn rules tiss the occurrence of
other fields. Learning rules based on other fields is a tecdenijat should be
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incorporated into all IE systems to take advantage of theret structure in the
data and the relationship between fields. Witheg,; the performance came from
a combination of the learning algorithm and the features.s¥e that SVM was
the best performing learning algorithm and was substdyntistter than several
alternative algorithms. The actual learning algorithnolisg (LPY is quite simple
and is likely that its performance could be improved by usirgironger learning
algorithm. The features used also contribute to performa@ur system has a
richer feature-set than many of the competitor IE systentkedE systems can
improve performance by having as rich a feature-set aslgessi

The two-level approach to classification that we introduae give large in-
creases in performance. This method of combining sets e§ifiars, and using
high-precision classifiers to filter the predictions of higitall classifiers, can be
used by any IE system to improve its performance.

In general, IE systems to date are built from scratch. Theylioe a variety
of components, some of which give good performance and sdmdich give
sub-optimal performance. Future IE systems should combomeponents that
have been shown to have high performance. These compoments a

e Arrich feature representation that encourages generializat

e The ability to filter uninformative instances and overcomalglems caused
by class imbalance.

¢ A state-of-the-art Machine Learning algorithm that giveghtperformance
on the IE task.

e Enhancements to the basic learning algorithm that impreréopnance
such as boosting, bagging, stacking.

e Methods of combining the predictions of different modelsnprove per-
formance such as our two-level approach.

e The ability to incorporate information about other fieldsl @@present struc-
ture and relations between fields.
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10.2 Future Work

There are several directions for future work. The first diggtis investigating
better ways to incorporate contextual information betwields into the model.
We showed in chapter 9 that there are strong relations bata@®e of the fields
in the dataset. The occurrence of one field can affect theghitity of another
field occurring. Some fields are likely to occur in sequenag some fields are
likely to occur together. BE learns to extract fields independently. It doesn't take
account of other fields when trying to learn a particular fidlde Pascal dataset is
one where some fields tend to occur in close proximity to edlobroElie doesn’t
use this information when learning. Using information abthe relationships
between different fields and using the predictions of ond frelguide predictions
of another has the potential to improve performance wher#te is structured
and fields tend to co-occur in the data.

Our two level approach uses the orphan predictions forsstatiientify areas
of the documents that we should take a closer look at to see gheuld identify
an end there. This multi-level approach could be extendem fstart-end pairs
to field-pairs. For example, if we know thatimeis likely to follow stime we
could apply aretime classifier that is more specialized at identifyiagmeto
areas of documents where we identified stime but didn’t identify anetime
Another approach might be to alter the confidence of a priedidiased on the
occurrence of other fields nearby. For example, we couleas® the confidence
in anetimeprediction if it occurs soon after atimeprediction. Another approach
might add features to the dataset that the learner can usao the relations
between different fields. We tried this approach in chapteut9a more detailed
representation that takes account of the distance betwemrences of the fields
might be more successful.

The second direction for future work is to investigate meghiwor dealing with
the class imbalance problem that occurs when represetriiiag b token classifi-
cation task. EIE takes advantage of moderate class imbalance. When the class
imbalance is moderate, the one-level approach gives hggigion and moderate
recall. BLIE’s two level approach can then improve recall. When the dlabsl-
ance is very high, the recall from the one-level approachbesso low that EIE’S

116



two level approach has little potential for improving récdlhe methods that we
investigated for undersampling negative instances imga@xecution time with-
out affecting accuracy but they didn’t improve accuracy.Wed to find methods
that can be applied to datasets with high imbalance thatinvgrove recall to a
level where EIE’s two level approach can significantly improve performance

A third direction for future work is to investigate Active aming approaches
to IE. The annotation of training data is the most time consgrpart of IE. It is
desirable to minimize the number of documents that need &nbetated while
at the same time maximizing performance. Active Learninglwves actively se-
lecting which documents are put forward for annotation stoasmaximize the
information that the learner receives. We would like to selee documents that
are most informative and ignore documents that don’t giyaprovement. One
method to select documents could use disagreement amorgsimadt with dif-
ferent redundant views of the data. We saw that using onltdken features
and using all features except the token features both gawe gerformance. We
could build two models using these two different views of da¢a and choose to
annotate documents where they disagree on their predsction

Another direction for future work is to develop methods foimhal theoretical
analysis of IE. To date there has been little work in this amea work in IE has
been largely empirical. As IE matures it would be desirableevelop formal
theoretical models that describe the IE task and can be asative performance
bounds for IE systems.
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Appendix A

Publications

2006

2005

2005

2004

2004

2003

Learning to Classify Documents according to Genre Aidan Finn
and Nicholas KushmerickJournal of the American Society for In-
formation Science and Technology (JASIST), Special Issu&om-
putational Analysis of Style, Volume 7, Number 5

Elie: A Two-level Boundary Classification Approach to Adap-
tive Information Extraction . Aidan Finn and Nicholas Kushmerick.
First PASCAL Challenges Workshop

Adaptive Information Extraction Research at UCD. Aidan Finn,
Brian McLernon and Nicholas KushmerickDagstuhl Seminar on
Machine Learning for the Semantic Web

Multi-level Boundary Classification for Information Extra ction.
Aidan Finn and Nicholas KushmericEuropean Conference on Ma-
chine Learning

Information Extraction by Convergent Boundary Classification.
Aidan Finn and Nicholas KushmerickAAI-04 Workshop on Adap-
tive Text Extraction and Mining

Learning to Classify Documents according to Genre Aidan Finn
and Nicholas KushmericklJCAI-03 Workshop on Computational
Approaches to Style Analysis and Synthesis

118



2003

2002

2002

2001

Active Learning Selection Strategies for Information Extraction.
Aidan Finn and Nicholas KushmerickCML-03 Workshop on Adap-
tive Text Extraction and Mining

Machine Learning for Genre Classification Aidan Finn. Msc.
Thesis (University College Dublin)

Genre Classification and Domain Transfer for Information Fil-
tering. Aidan Finn, Barry Smyth and Nicholas Kushmeridkuro-
pean Colloquium on Information Retrieval Research

Fact or Fiction: Content Classification for Digital Librari es Aidan
Finn, Barry Smyth and Nicholas KushmerickKloint DELOS-NSF
Workshop on Personalization and Recommender Systems italDig
Libraries.
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Appendix B

A Simple Analysis of Two-level
Classifier Behaviour

To date IE research has been largely empirical. Researbbeesideas, they im-
plement them and they are tested on the standard IE datddatbine Learning
and Text Classification have strong theoretical foundatiout to date there has
been little formal theoretical analysis of the IE task anel phoperties of IE sys-
tems. Such analysis would be useful in analyzing the behawafsystems and in
estimating upper bounds on their performance.

In this chapter we introduce a simple way to analyze and midel’s be-
haviour.

B.1 Modelling ELIE s Behaviour

ELIE consists of two levels. Each level consists of start and &ass$ifiers. EIE’S
performance depends on the performance of each level arek Gitart and end
classifiers.

Figure B.1 shows the confusion matrices for the L1 and L2 stz end clas-
sifiers (TP, FP, TN and FN refer to true positives, false passt true negatives
and false negatives respectively). The performance of tiserable as a whole
depends on the performance of these various components.

We can model the probability of the ensemble correctly mtéuy a start or
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Figure B.1: Confusion matrices for L1 and L2 start and endsifeers

Predicted Predicted

] 8 e ¢
A A

PsAs P§As Pede Pé Ae
C 5 c ¢
t t
u u
q 8| Psas PSAS q €| Peae PéAé
l |

Figure B.2: EIE ensemble start and end confusion matrices
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end using by listing the conditions under which the ensemiilenake start or
end predictions. Figure B.2 shows the confusion matricethi® ensemble. The
notation signifies the probability that a prediction is madeach quadrant of the
confusion matrix. For exampld;sAs means predict start where it is actually a
start. PsAs means predict a start where it is actually not a start.

B.2 Calculating Confusion Matrix Probabilities

We can convert a logical expression such as (AND (OR a b) o)dntexpression
for computing its probability such as (* (+ p(a) (- p(b) (* p@b)))) p(c)) where
p(x) is the probability of x. To perform this conversion wepgpthe axioms of
probability theory, assuming that everything is indeperide

pla Vv b) = p(a) +p(b) — pla A b)

plaAb) = p(a) * p(b)

p(—a) =1—p(a)

In addition there is mutual exclusion between the four gaatdr of the con-
fusion matrix. Each prediction falls into exactly on of theuf quadrants for its
confusion matrix. If two predictions are mutually exclusithey cannot occur
together. Therefore

pla Ab) = 0if aandbare mutually exclusive

p(a Vv b) = p(a) + p(b)if aandbare mutually exclusive

B.3 ELIE : A Logical Representation

We can describe the conditions under which Elie will makeealjmtion as logical
combinations of the individual classifiers. Listing the daions under which the
ensemble will make a prediction is relatively easy, but weshalso represent the
fact that there is mutual exclusion between the four quadraieach confusion
matrix. The mutual exclusion for each of the start and endsdii@rs for level 1
and level 2 are:

I 1_s_nutex = AND(

XOR(I11_ps_as, OR(I 1_pxs_as, | 1_ps_axs, | 1_pxs_axs)),
XOR(I 1_pxs_as, OR(I 1_ps_as, | 1_ps_axs, | 1_pxs_axs)),
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XOR(I 1_ps_axs, OR(I 1_ps_as, | 1_pxs_as, | 1_pxs_axs)),
XOR(1 1_pxs_axs, OR(11_ps_as,| 1 ps_axs,|1_pxs_as)));
I 1 _e_nutex = AND(
XOR(1 1_pe_ae, OR(l 1_pxe_ae, | 1_pe_axe, | 1_pxe_axe)),
XOR(I 1_pxe_ae, OR(I 1_pe_ae, | 1_pe_axe, | 1_pxe_axe)),
XOR(I 1_pe_axe, OR(I 1_pe_ae, | 1_pxe_ae, | 1_pxe_axe)),
XOR(1 1_pxe_axe, OR(11_pe_ae,| 1_pe_axe, | 1_pxe_ae)));
I 2_s_nutex = AND(
XOR(1 2_ps_as, OR(|1 2_pxs_as, | 2_ps_axs, | 2_pxs_axs)),
XOR(I 2_pxs_as, OR(l1 2_ps_as, | 2_ps_axs, | 2_pxs_axs)),
XOR(I 2_ps_axs, OR(l1 2_ps_as, | 2_pxs_as, | 2_pxs_axs)),
XOR( 1 2_pxs_axs, OR(1 2_ps_as, | 2_ps_axs, | 2_pxs_as)));
| 2_e_nutex = AND(
XOR(| 2_pe_ae, OR(| 2_pxe_ae, | 2_pe_axe, | 2_pxe_axe)),
XOR(| 2_pxe_ae, OR(| 2_pe_ae, | 2_pe_axe, | 2_pxe_axe)),
XOR(| 2_pe_axe, OR(| 2_pe_ae, | 2_pxe_ae, | 2_pxe_axe)),
XOR(| 2_pxe_axe, OR(1 2_pe_ae, | 2_pe_axe, | 2_pxe_ae)));
mutex = AND(I 1_s_nmutex, |11 e nmutex, |2_s_nutex, |2_e_nutex);

In the above conditions the notation is of the form leveldpron_actual with
x signifying negation. So I1_ps_axs indicates that at ldvele make a start
prediction that is actually not a start. The conditions regpito make a prediction
atLl are:

OR(l11_ps_as, |1 _ps_axs);
OR(l1_pe_ae, |1 pe_axe);

|1 _ps
| 1_pe

The conditions required to make a prediction at L2 are:

| 2_ps
| 2_pe

AND(I 1 pe, OR(l12 ps_as, |2 ps_axs));
AND(1 1 _ps, OR(lI 2 _pe_ae, |2 pe_axe));

We can estimate the probabilities for each quadrant of tiserable confusion
matrix. The prob function converts a logical expressiont@goression for com-
puting its probability.

ps_as = OR(l11_ps_as, AND(I1 pe, |12 ps_as));
prob _ps _as = prob(ps_as, nutex);

ps_axs = OR(l 1 ps_axs, AND(I1 pe, |2 ps_axs));
prob_ps_axs = prob(ps_axs, nutex);

ps_axs = OR(l1 _ps_axs, AND(lI1 pe, |2 ps_axs));
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prob_ps_axs = prob(ps_axs, nutex);

pxs_as = OR(l1 _pxs_as, AND(lI1 pe, |2 pxs_as));
prob _pxs_as = prob(pxs_as, mnutex);

pxs_axs = OR(l1_pxs_axs, AND(I1 pe, |2 pxs_axs));
prob _pxs_axs = prob(pxs_axs, nmutex);

This give us a large complex logical expression that dessribe probability for
each quadrant of the ensemble confusion matrix. To simghifyexpression we
can put values at L1 and then use some logical expressionaseftto simplify
the resulting expression. If we simplify the expression ®irgyle variable then
we can plot the behaviour of the system as a function of thalvie.

B.4 Plotting ELIE s Behaviour

The logical expressions generated that describe’&behaviour are too complex
to be useful in practice. However if we make some simplifyasgumptions about
the values that occur in the confusion matrix we can greatipbfy the resulting
logical expressions. If we represent all the values in thedgants using a single
variable, then we can plot the performance of Elie as a fanadf that variable.
We plot the behaviour of the ensemble of start classifiers. étd classifiers will
have similar behaviour.

Figure B.3 shows the confusion matrices for L1 and L2 as atfonof a
single variable. To represent the confusion matrices wittingle variable we
make some simplifying assumptions.

We assume that the false-positive rate for L1 start and emdlakso the false
negative rate for L2 start and end, are all equal to some valWe also assume
that all remaining probability mass is distributed among dther 3 cells of each
confusion matrix (this assumes that the dataset is balarmecetlwe assume that
everything else is probabilistically independent.

This allows us to see if the ensemble is robust to lower pitst level 1 and
lower recall at level 2. As increases, the number of false positives at L1 and the
number of false negatives at L2 increases.

We use MuPAD and its ‘simplify’ function to simplify the loggl expressions.
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Figure B.3: Confusion matrices for L1 and L2, starts and eads function of a
single variable

Figure B.4 shows the probability of predicting a start tisaactually a start,
i.e. a true positive, as a function af As a goes to 1, the probability goes to
zero. The fall in pPSAS is non-linear and gradual. The uppent is rather low
(approximately 0.4). This comes from the assumption thatrémaining proba-
bility mass (1) is distributed equally among the other 3 cells of each csiofu
matrix. This assumes that the number of false positives alsd hegatives equal
the number of true negatives. Clearly this is not the case aseal world system
(especially if the data is imbalanced) there are likely tonb@e true negatives
than false positives or false negatives. The upper bounddatme: higher if we
made a more optimistic assumption about the distributiceriadrs.

Figure B.5 shows the probability of predicting a start tkatctually not a start,
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Figure B.5: The probability of predicting a start that isumdly not a start
(PS_AXS)

l.e. a false positive. This increases constantly &screases.

Figure B.6 shows the probability of not predicting a startewehwe should
have predicted a start (i.e. false negative). This goesrtisvh asa goes to 1.
However it only starts to increase agjoes above 0.5.

Figure B.7 shows the probability of not predicting a stadttis actually not
a start (true negatives). Asgoes to 1, the probability of correctly predicting a
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Figure B.7: The probability of not predicting a start thatatually not a start
(PXS_AXS)

negative goes to 0.

In both cases where we don't predict a start (figure B.6 anddidu7) the
upper bound is much higher than cases where we do prediat alt&s indicates
that the ensemble of start classifiers is more likely to mtealtoken as not being a
start than as being a start, i.e. the ensemble is predisposegative predictions.
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Figure B.8: Precision, Recall and F1 for the ensemble

Figure B.8 shows the precision, recall and f1 for the enserabktart classi-
fiers based on the probabilities as a functionvofit shows that the ensemble is
predisposed to high precision. It also shows that ascreases both precision and
recall fall. However precision falls at a higher rate thacate The ensemble’s
recall is more robust to errors than its precision as it faltsre gradually as
increases.

B.5 Summary

In this chapter we described a method of analyzing the behawf ELIE. We
listed the logical conditions necessary for the start or eadsifiers to make a
prediction. We converted these logical expressions to ghibistic expressions
and used mathematical analysis software to simplify the&peegssions. We then
made some simplifying assumptions that represented thersggperformance as
a function of a single variablex]. We plotted the expected behaviour afiE's
start classifier for all four quadrants of the ensemble csinfumatrix and used
these expected values to plot precision, recall and f-nreasu

The gives us a way to model the expected behaviour of ourraystée can
adjust the distributiom among the cells of the confusion matrix to estimate the
performance of the system. The distribution that we choserass high precision
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at level 1 and high recall at level 2, with the remaining pitwliy mass distributed
equally among the remaining cells of the confusion matrixe $&w that the en-
semble was predisposed to high precision and lower rectdltivis configuration
and that the ensemble is more likely to predict negativess plusitives.
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Appendix C

Full list of Features

This appendix gives details of all the features used byeE Each instance en-
codes all these features for the token it is centered on, h&svéor a predefined
number of tokens before and after.

C.1 Token features

ELIE uses all tokens that occur in the training data as featureesd are depen-
dent on which words occur in the training document and aretonerous to list
here.

C.2 POS features

POS tagging uses Brill's POS tagger. There are 36 POS feature

CC Coordinating conjunction. E.g. and, both, but.
CD Cardinal number. E.g. mid-1890, nine-thirty.
DT Determiner. E.g. all, an, another, any.

EX Existential there. E.g. there.

FW Foreign word. E.g. alais, je, jour.
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IN Preposition or subordinating conjunction. E.g. astrigeoag, upon, whether.
JJ Adjective. E.g. regrettable, calamitous, first.

JIJR Adjective, comparative. E.g. bleaker, braver, breezieefér.
JJS Adjective, superlative. E.g. calmest, cheapest, chgictstsiest, cleanest.
LS Listitem marker. E.g. A, A., 1.

MD Modal. E.g. can, cannot, could, couldn't.

NN Noun, singular or mass. E.g. Casino, afghan, shed, theatost
NNS Noun, plural. E.g. undergraduates, products, bodyguards.
NP Proper noun, singular. E.g. Conchita, Trumplane, Christos
NPS Proper noun, plural. Americans, Americas, Amusements.
PDT Pre-determiner. E.g. all, both, half, many.

POS Possessive ending. E.g. 's

PP Personal pronoun. E.g. hers, herself, him, himself.

PP$ Possessive pronoun. E.g. her, his, mine, my.

RB Adverb. E.g. occasionally, unabatingly, maddeningly.

RBR Adverb, comparative. E.g. further, gloomier, grander.

RBS Adverb, superlative. E.g. best, biggest, bluntest.

RP Particle. E.g. aboard, about, across, along.

Sym Symbol. E.g. @, =

To To.

UH Interjection. E.g. Goodbye, Gosh, Wow.

VB Verb, base form. E.g. ask, assemble, assess, assign.

131



VBD Verb, past tense. E.g. pleaded, swiped, soaked.

VBG Verb, gerund or present participle. E.g. telegraphingrisy, focusing,
angering.

VBN Verb, past participle. E.g. chaired, used, experimented.

VBP Verb, non-3rd person singular present. E.g. cure, lengtbersh, termi-
nate.

VBZ Verb, 3rd person singular present. E.g. marks, mixes, esgls, seals.
WDT Wh-determiner. E.g. that, what, which.

WP Wh-pronoun. E.g. what, which, who, whom.

WP$ Possessive wh-pronoun. E.g. whose.

WRB Wh-adverb. E.g. how, however, whenever, where.

C.3 Gazetteer Features

The gazetteer consists of a set of lists. If a token occursienad the lists it is
tagged with the name of that list and a feature is added tadtance. The lists
that are contained in the Gazetteer are:

firstname A list of first-names taken from the U.S. census Bureau.
lastname A list of last-names taken from the U.S. census Bureau.
title List of titles such as Senator, Miss, Mr, Prof.

tittepost Titles that occur after a name e.g. Jr, Esq.

city A list of cities from around the world.

country A list of countries.

currencyunit A list of currencies from around the world.
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location A list of location descriptors e.g. Creek, County, Valley.

months The 12 months of the year.

numbers A list of numbers in text form e.g. One, Thirty.

province A list of provinces in America and Canada.

street A list of street address words. e.g. Avenue, Boulevard.

timeampm Words describing whether time is am or pm. e.g. am, noon, igindn
timeunit Units of time, e.g. hours, minutes.

uspssecondaryA list of secondary location identifiers from the U.S. postai-
vice, e.g. Floor, Room, Apartment.

states List of American states.

stopwords A list of common stopwords.

C.4 Orthographic Features

Orthographic features encode information about the typextthat appears in the
token. Some of the orthographic features, e.g. symbol,i@peunctuation,are
defined in the configuration file.

controlchar Token is a control character.

symbol Token is a symbol. E.g. $, £.

special Token is a pre-defined special character. E.g. ‘\n’.
punc Punctuation. E.g. ,.!I?

Ibrac Left bracket. E.g. {[(<.

rbrac Right bracket. E.g. }])>.

word Token consists of only letters.
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long Long word. The default length for a long word is 6.
allupper Token consists of all upper case characters.
alllower Token consists of all lower case characters.
capitalized First character of the token is capitalized.
num Token is numeric.

xdigitnum The number of digits in a numeric tokercan take values 1-4. E.g.
1digitnum, 2digithnum.

snum Short number. A number consisting of one or two digits.
schar Single character.

lettersanddigits Token contains both letters and digits.

C.5 Chunk Features

NPs Start of a noun-phrase.
NPi Token occurs inside a noun-phrase.
NPe End of a noun-phrase.
VPs Start of a verb-phrase.
VPi Token occurs inside a noun-phrase.

VPe End of a verb-phrase.

C.6 ERC Features

person Matches gazetteer sequences that are patterns for a peaswn rE.g.
title-firstname-lastname

time Matches gazetteer and orthographic sequences that aeengafbr times.
E.g. 1digitnum-punc-2digithum-ampm

134



C.7 Pair features

We create a pair feature for each pair of features in the P@&sttger, ortho-
graphic, chunk and ERC features. E.g. Token is firstname apititized.
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Appendix D

Informative Features

This chapter lists informative features for the start andl @assifiers of each field
in the three benchmark datasets. For each field, we list thentest informative
features, as ranked by Information Gain, for a single run 0ERising a 50:50
split. So for each field, the features listed were the 10 ndstinative features
chosen by the model based on 50% of the training data. Thesgig an idea of
which features and which kinds of features are informatretie various fields.

The features are formatted as TYPE_VALUE_ POSITION. TYPIBnge of
Tok (Tok), G (gazetteer), T (orthographic), POS (partjoéexch), C (chunk) or
E (entities). POSITION can have value -4 to 4 indication theurence of the
feature in relation to the current Tok. For example, G_pefisst_-1 indicates that
the token before the current one was tagged as a first-nanie lgaretteer.
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D.1 Seminar Announcements

speaker stime

start end start end
1| E_person_1|G_personlast_ (T _1digithum_OE_time -1
2| E_person_0| E_person_-1|T_2digithum_2E time_ 0
3|G_personfirst 0 E_person_ 0| T_snum_0 |E_time_-2
4|G_personlast_|G_personfirst -1 E_time_1 |G_ampm_0
5| POS NNP_0O] POS_NNP_0|| E_time 0 | G_time O
6 |T_capitalized_QT capitalized § T num_0 |Tok pm_0Q
7! C_NPs O C_NPe O E time 2 | Tok : 3
8| C_NPe 0 | POS_ NNP -1| Tok : 1 | Tok : 1
9| POS_ NNP 1/ C NPs -1 | Tok_time -2|E_time -3
10T _capitalized_{I'_capitalized_-l T_snum_2 |T_snum_-3

etime location

start end start end
1| Tok - -1 Tok - -4 | Tok_place -2 T_4digithum_Q
2 |T_1digitnum_0 G_time 0 Tok hall_1 | POS_NNP_-1
3|T_2digitnum_2 G_ampm_0 | POS_NNP_QT_captialized_-[L
4| E_time 0 Tok_pm_0O E_time -4 Tok \n_1
5| E_time 1 E_time_-1 | Tok_wean_0| T_special_1
6| G_ampm_3| E_time_-2 |T_4digithum_1 Tok hall_0
7| G_time 3 E_time O G_time_-4 T num_O
8| Tok pm_3 |T_1digitnum_-3 G_ampm_-4| Tok weh_ -1
9| T_snum_ O Tok 00 -1 | Tok weh 0| Tok hall -1
10 Tok : 1 E_time -3 Tok : -1 Tok 5409 0

137



D.2 Job Postings

id title

start end start end
1 Tok_< -1 Tok > 1 POS_NNP_0 |[Tok_programmer |
2 |Tok_message_t3 T_rbrac_1 | T_capitalized_0 C_NPe_ 0
3| T_lbrac_-1 Tok_:_ 4 T _long_0 POS_NNP_-1
4 Tok_: -2 |Tok_reply-to_3Tok_programmer | T long_0
5| T_special_-4| Tok_nntp_3 C_NPs_0 POS_NNP_O
6| Tok \n_-4 Tok _\n_2 Tok_austin_-2 | T_capitalized_0
7| POS_NNP_-3| T_special_2 T_word_0 Tok_engineer_0
8 T_num_0 Tok_com_0 Tok_title_-2 Tok_developer_0|
9 T _num_2 |T_capitalized_B G_city:-2 T_capitalized_-1
10 T_punc_-1 | POS_NNP_3| POS_NNP_1 C NPs_-1

company salary

start end start end
1| POS_NNP_0Q Tok victina_0 Tok_$_1 Tok_$_-2
2| Tok victina_ 0] POS_NNP_O Tok_$ 0 Tok k 0
3| T_allupper_0| T_allupper_0 Tok to 0 Tok_$ -1
4| Tok_ctg O POS_VBZ_1 | POS TO 0| Tok to -3
5|Tok_systems (1  Tok ctg_O T_symbol_1| POS _TO -3
6| Tok \n_-1 Tok_systems_1 Tok_k_3 T_symbol_-2
7| T_special_-1| Tok_alliance_0 | T_symbol_1|T_2digithum_-1
8 |Tok_alliance_0 Tok is_1 T_2digitnum_2 Tok $ -3
9| T_special_-2|Tok_international_P Tok_up_-1 Tok_000_0
10| Tok_ \n_-2 Tok_\n_-2 Tok_$_4 Tok_sat 4
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D

recruiter state

start end start end
1 |Tok_resource_{Tok_resource_41 Tok tx_0 Tok_tx_0
2| POS_NNP_0|Tok_spectrum_[@_location_-2G_location_-
3|Tok_spectrum_{1 POS_NNP_-1| T_allupper_(Q T_allupper_Q
4| C_NPs_ 0 | POS_NNP O| Tok - -1 Tok - 1
5| C_NPe 1 [T _capitalized -LlPOS_NNP_Q0POS_NNP_(
6 | T_capitalized_0 Tok_quorum_3G_country_-2G_country_-2
7| POS_NNP_1| Tok 5050 2 |Tok_ austin_2Tok_austin_2
8| Tok_quorum_4  Tok_dr_4 Tok_us_-2 | Tok_us_-2
9| Tok 5050_3 C_NPs_-1 G_city 2 G_city 2
10 T_capitalized_1 C_NPe_0 Tok_-_-1 Tok_-_-1

city country

start end start end
1 G_city 0 G_city_0 |G_country_0G_country_(
2| Tok_austin_0| Tok_austin_O| Tok us_0 | Tok us_0
3| G_location_0|G_personfirst_[@_location_0G_location_0
4|G_personfirst 0G_location_0|POS_PRP_pPOS_PRP_0
5| POS_NNP_0O| POS_NNP_O|T_allupper_0T_allupper_
6 |T_capitalized_(T _capitalized_ D Tok_tx 2 | Tok tx_2
7| Tok tx_-2 Tok_tx_-2 Tok_-_1 Tok_-_1
8| T_long_ O T _long_0 Tok - 3 Tok - 3
9 Tok_-_-1 Tok_-_-1 |Tok_austin_4Tok_austin_4
10 Tok us_-4 Tok_us_-4 G_city 4 | G_city 4
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language platform

start end start end
1| Tok c_O Tok_c_-2 POS_NNP_0| POS_NNP_O
2|T_allapper_0 Tok _+ 0 [Tok_windows_| Tok_nt_0O

3| Tok + 2 Tok_+-1 Tok_unix_0 Tok_unix_0

4| Tok +_1 |Tok_allupper_0 T_allupper_0| T_allupper_0

5| T_word_O Tok_c_0 Tok_nt_ 0 [Tok_windows_-1

6|Tok_cobol 0 Tok , 1 T_word 0 |Tok windows_(

7 |Tok_visual_Q POS_NNP_O|T_capitalized_(0 Tok_95 0

8|POS_NNP_DT_allupper_-2 T_alllower_0 T_punc_0

9| Tok + 3 | Tok cobol_ 0| T_punc_O T_alllower_0

10 Tok / -1 | T_symbol -1| Tok 95 1 T_schar_0

application area

start end start end

=

POS_NNP_0| POS_NNP_0|POS_NNP_D POS_NNP_O

N

Tok_oracle_0| Tok_oracle_0| Tok_, -1 T_allupper_0

w

T_allupper_0|T_capitalized_(T_allupper_0 Tok_, 1

4| T_word 0 Tok_db_-1 | T_punc_O T_punc_0

o

T_capitalized_ D T_long_0 T _word 0 T _word 0

6| Tok db_O |Tok sysbase D Tok , 1 Tok_, -1

7| T_long_0 T_punc_0 | T_schar_0 Tok_mfc_0

[ee]

Tok_sysbase 0 Tok_, 1 C_NPs_0 T_schar_0

9 Tok_,_-1 T_alllower_1 | Tok_mfc_0 T_long_0

10 T_schar_0 T_word_0 C_NPe_1 [Tok_client/server_|
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required years exp. desired years exp.
start end start end
1|T_1digitnum_0 Tok years 1| Tok years_1 | Tok years_1
2| T_snum_0 |T_1digitnum_gQ T_snum_0 |T_21digithum_-2
3| T_num_O T_snum_0 Tok_- -1 T_snum_0
4| Tok_years_1| POS_NNS_1| T_1digitnum_O Tok_- -1
5| Tok 3 0 T_num_0 | T_21digithum_-2|T_1digithnum_(Q
6| Tok years_2| Tok + 0 T _num_0 Tok 5 0
7| Tok + 1 T_schar_0 Tok 5 0 T _num_0O
8| Tok 2.0 Tok 3 0 T_snum_-2 | POS_NNS_1
9| T_schar_0 |T_21digithum_-1 POS VBP_2 | T_snum_-2
10 T_symbol_1| Tok_least -1 [Tok_experience_|2 POS_VPB_2
required degree desired degree
start end start end
1 T_allupper_0 Tok_degree_1 Tok_msme_0 Tok_b_-3
2 POS_NNP_O T_allupper_0 Tok_bsme_-2| Tok _bsme_-2
3 Tok_bs 0 Tok_bscs_0 T_allupper_0 | Tok_msms_-0
4 Tok_bscs_0 Tok_bs_0 Tok_science_3 Tok_science_3
5 |Tok_qualifications_-frok_qualifications_-fok_preferred_-@ok_associates | :
6| Tok bachelor_0 POS_NNP_O Tok_or_4 Tok_degree_3
7 Tok_s_2 Tok_b_-3 Tok_b 0 |Tok_computer_:
8 Tok_degree_1 Tok_science_4 |Tok_computer_2 Tok_masters_(
9 Tok_b_0 Tok_ba_0 T_allupper_-2 Tok_s_-1
10 T_word_0 Tok_bsee_0 POS_NNP_0| POS_NNPS_2
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post date
start end
1| G_month 1| G_date_-1
2| G_date_1 | G_month_-1
3| Tok_1997_2| Tok_1997_0
4| E_time_3 E_time_4
5| E_time_4 E_time_3
6| Tok sep_ 1 E_time_2
7 |T_4digitnum_2 E_time_1
8|T_2digithum_3 Tok_sep_-1
9| T_snum_0 |T_4digitnum_|
10 T_snum_3 |T_2digithum_:

D.3 Reuters Corporate Acquisitions

acquired purchaser

start end start end
1| POS_NNP_O|T_capitalized_ 0 Tok - -1 |T_capitalized_0
2 |T_capitalized_0 POS_NNP_0| T_symbol -1| POS _NNP_O
3| C_NPs O Tok_inc_0 | POS_NNP_O|T_capitalized_-[L
4|T_capitalized_{T_capitalized_-l G_date_-3 | POS_NNP_-1
5/ C_NPi_1 C_NPe O G_month_-3 C_NPe O
6| POS_NNP_1] POS_NNP_-1|T capitalized_p Tok inc_0
7| T alllower 0| C_NPi_-1 C_NPs 0 Tok said_1
8 |T_capitalized P Tok _corp_0 |T_capitalized_[L Tok corp_0
9| T alllower_1|T_capitalized_-2 T_snum_-2 | T_alllower_0

10l POS_NNP_2

POS_NNP_-2

Tok _march_-3

Tok it 2
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seller acqabr
start end start end
1| POS_NNP_0| POS_NNP_0| POS_NNP_0| POS_NNP_0O
2| Tok - -1 |T_capitalized_(r_capitalized_{T_capitalized_|
3| T_symbol -1|T capitalized -LT_alllower 0| T_alllower_0
4| G_month_-3| POS _NNP_-1| G_stopword_0G_stopword_(
5| G_date -3 C_NPe 0 | T_allupper_0| T_allupper_0
6 [T_capitalized D Tok inc_0 Tok ' 1 Tok ' 1
7/ C_NPs O Tok corp_0 T long O T long_0
8 |T_capitalized_[I Tok_said_1 | POS_IN_-1 T word 0
9| POS NNP_1| T alllower 0| T word O Tok s 2
100 T _shum_-2 Tok it 2 T schar 0 T schar 0
purchabr sellerabr
start end start end
1| POS_NNP_0| POS_NNP_0| POS _NNP_0| POS NNP_ 0O
2| T alllower 0| T_alllower 0| T _alllower 0| T_alllower_0
3| Tok reuter_-1T capitalized_DTok_reuter -1 T allupper_0
4|T_capitalized_0Q T_allupper_0| T_allupper_0| Tok { 1
5| T _allupper_0| G_stopword _0G_personlast 11 T lbrac_1
6 |G _personlast 11 Tok { 1 |T capitalized 0 Tok } 3
7| G_stopword_0Q Tok_reuter -1}  Tok_. -3 T rbrac_3
8 Tok . -3 T lbrac 1 Tok } 3 |T_capitalized_|
9| T word O | POS VBD 1 Tok {1 G_stopword_(
100 T word -2 Tok } 3 T rbrac_3 | Tok reuter -1

(=)
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acqloc dlramt
start end start end
1|T_capitalized_DG_location_0 T num_0O Tok dirs 0
2| G_location_O|T_capitalized_p Tok_min_1 Tok_min_-1
3| POS_NNP_0| G_province_(Tok_undisclosed |0 POS _NNS 0
4| POS_IN_-1 | T alllower 0 T snum_O T num_-2
5| Tok in -1 | POS NNP 0] POS IN_-1 Tok_disclosed_(
6| G city 0 G city 0 Tok for_-1 C_NPs -1
7| T _alllower_0 Tok , 1 Tok dirs_ 2 Tok . 1
8| T_long_ O T punc_1 | T_3digithum_0 C_NPe O
9|G_stopword_-1G_stopword_Q G_stopword_-1|Tok undisclosed |
10 G_province_(J Tok_based_1 Tok_about -1 Tok \n_2
status acgbus
start end start end
1| POS_VBN_O | T_alllower 0 | POS_NN_O| T_long O
2| Tok agreed 0 T long_0 T long 0 | POS_NNS 0
3 T long_0 |Tok completed |G_stopword 0 POS _NN_O
4| T_alllower 0 | Tok _agreed -2 T_alllower_ 0] C_NPe 0O
5 Tok it -2 POS VBN 0 | Tok oil 0 | T_alllower 0
6 [Tok_completed 0 C_VPe 0 POS NN_1| G_stopword_(
7| POS_PRP_-2| G_stopword_ 0] C_NPs_O T word 0
8| Tok has -1 | Tok acquired_ 0 T word O C_NPi_-1
9 Tok it -1 Tok_principle_0 Tok _and_1 |Tok_products_|
10 POS_VBD_O0 [Tok_agreement [0 C_NPi_1 | POS_NN_-1
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Appendix E

Using ELIE

ELIE is a tool for adaptive information extraction. It also prd&s a number of
other text processing tools e.g. POS tagging, chunkingettger, stemming. It is
written in Python.

E.1 Installation

Requirements:

e Python 2.1 or higher
e Java 2 or higher
e Weka (included in distribution)

e Brilltag (if you intend to use datasets other than those ipiexi)

Unzip the RIE archive. Edit thébasedir, BRILLTAGPATHindjava variables in
the file config.pyto describe your own system. AGELIEHOME/lib/weka.jarto
your java classpath.

E.2 Usage

ELIE contains the following executable files

evaluation.py The main way to run EE.
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scorer.py Calculate performance measures fromeelogs.
extractor.py Performs basic learning and extraction.
preprocessCorpus.py Preprocesses a corpus of text files.
tagging.py Does POS, chunking etc. on a text file.

You can execute these files without any arguments to get ustggmation.

E.2.1 Input Format

Documents should be stored in text files with one documentgxtifile. Fields
should be marked using the syntsfkeld> ... </field>.

E.2.2 Preprocessing

This stage adds tokenization, orthographic, POS, churddaadgyazetteer informa-
tion to the input files and stores it usingE’s own format. This stage only needs
to be done once for each document collection. Running

preprocessCor pus. py datasetDirectory

will create a new directory calledatasetDirectory.preprocesse¢hich contains
all the files in ELIE’s internal format. Note the input files shouldn’t contairyan
unusual control characters and for every <field> there mes borresponding
<[field>.

E.2.3 Running ELIE

The recommended way to rurLEE is using the fileevaluation.py It takes the
following parameters.

-f field

A list of the fields to be extracted surrounded by quotes esgeédker stime etime
location”

-t trainCorpusDirectory
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The directory that contains the pre-processed corpus.
-D dataDirectory

The directory to save [HE's output and temporary files in.
[-T testCorpusDirectory]

Optionally specify a directory that contains the pre-pssesl test corpus. If no
test corpus is specifiedLEE will do a random split of the training corpus.

[-s splitfil ebase]

Specify a set of pre-defined splits for the training data.

If -t and -T are are set, thenLEE will train on trainCorpusDirectory and test
on testCorpusDirectory. Otherwise it will do repeated mndsplits on trainCor-
pusDirectory. Other options include:

-p set train proportion

For a random split experiment set the proportion of the datase for training.
The default value is 0.5.

-n nunber of trials
For a random split experiment set the number of trials. Thiaudievalue is 10.

-v version info
-h hel p

The corpora directories should contain preprocessed filgsi®. those created
by preprocessCorpus.py. The dataDirectory is where ELIEstare all its inter-
mediate and output files. The splitfilebase argument can lsddr predefined
splits.
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E.3 Output

The detail of EIE’s printed output is controlled using the paramet@nfig.verbosity

ELIE produces several logfiles that can be used by the bwi-scoréria’s
own scorer (scorer.py). The logfile names have foame.field.elie.number.level.log

The split files name has the foratie.field.number.splitEach split-file lists the
name of each training file, one per line, followed by a separébllowed by the
name of each test file, one per line.

These are located in the specified dataDirectory. For a rargdit experiment
ELIE will produce a split file for each iteration. Each split filstk the files used
for training and testing. To use pre-defined splits, pasd#se of the splitfiles
using the -s option.

E.4 Configuration

The file config.pycontains all the configuration options. In this section we de
scribe these parameters and their default values.
The config.py file contains several constants thaERises.

basedir = '/ hone/aidan/| E/ Elie5’

This is the full path to the directory where [ is installed

BRI LLTAGPATH="/usr/Brilltag/Bi n_and_Dat a/t agger’
This is the full path to the Brilltag tagger binary.
verbosity = 2

This controls the level of output that ELIE produces. Highambers produce
more output. It takes values 0 to 5.

java = ‘java -nmx1900000000 - 0ss1900000000
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This is the command to call the java runtime. You can add ave pmrameters
here. Itis a good idea to allocate plenty of memory to the jatexpreter.

use _psyco = 0

This can have values 0 or 1. Psyco is a program for dynamicaitypiling python
scripts for improved execution time. Enabling psyco willke&LIE run faster
but will use a lot more memory. On large experiments this dbegve much
improvement as most of the time is spent inside WEKA.

| earner = ' SMO

This setting controls which learning algorithm is used. SM@he default. Avail-
able options are: ‘knn’, ‘m5’, ‘kstar’, ‘hyper’, ‘m5rules’j48’, ‘OneR’, ‘neural’,
‘winnow’, ‘LMT’, ‘jrip’, ‘'SMO’, ‘prism’, ‘PART’, ‘ridor’, ‘bayes’.

The punctuation, symbols, Ibrackets, rbrackets, quategword, usable_tags,
reserved_characters and special_tokens parametersratamis that control the
behavior of the tokenizer and preprocessor. In generalgheyldn’t be changed.

The following options control EE’s behavior. These are the only options that
the user needs to change after installation.

w ndow = 4

This controls the number of tokens for which relation infation before and after
the current token is encoded.

m wi ndow = 10

This controls the length of the L2 window: How many instanbefore and end
and after a start to use for training.

stem=0
suffix =0
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Whether to use the token stems and token suffixes as features.

1
H

t oken
pos =
types
gaz =
chunk
erc =1

nm = 1 ¥
= =

These control which feature-sets to use. Set a value to Ostabl#i using those
features.

filter _n_attributes = 5000

This controls how many attributes to use for learning. Wesgtrit to use the top
n features as ranked by Information Gain.

filter threshold = 0

We can set a threshold here for attribute filtering. E.qg.irsgthis to 0.1 would
mean that we use the top 10% of attributes as ranked by Inf@m@ain.

undersanple = 0

This controls whether to use random undersampling of itsmnSetting it to 0.8
would randomly delete 80% of the negative instances

prune_i nstances = 0

This controls whether to prune uninformative instancedtirf®@git to 80 would
prune 80% of the instances as ranked by the informativerigls avord token.
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E.5 Examples

ELIE takes input documents that are in its own format. This foradds the
gazetteer, POS, orthographic features etc. To translabepais into this format
we use the preprocessCorpus.py command.

preprocessCorpus.py ./train

This creates a new directory called ./train.preprocesdedhicontains processed
versions of all the files that were in ./train. This only ne&al®e done once per
corpus.

evaluation.py -t ./train.preprocessed -T ./test.preprocessed
-D./tnmp -f ‘speaker stine etine |ocation’

This command does a single train-test run using the filesin.fsreprocessed for
training and the files in test.preprocessed for testing. ldbdiles are stored in
Jtmp. Four fields are extracted: speaker, stime, etimefilma.

evaluation.py -t ./train.preprocessed -D ./results
-n1l-p 0.8 -f ‘speaker stine etine |ocation’

This does a single random test/train split. The files in tpagprocessed are ran-
domly assigned to the train or test set with 80% of them assida the train set
and 20% to the test set. The log files and the split files aredtor./results

evaluation.py -t ./train.preprocessed -D ./tnp
-s ./tnp/elie.speaker. -f ‘speaker stine etinme |ocation’

In this example we use the -s option to tell Elie to use preddfinain-test splits.
The split files define which files from ./train.preprocessedediocated to the train
and test sets. The -s option takes the base of the splitfilen&nplitfile names
end in .split and should be formated as elie.field.splitnensplit so the above
example matches all files that matéimp/elie.speaker.*.split

evaluation.py -t ./train.preprocessed -D ./tnp
-s ./tnp/elie.speaker.[1-5] -f ‘speaker stine etine |ocation’
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We can also add regular expressions to the splitfile base. abbee example
matches splitfiles where the base is elie.speaker. and hawmber starts with
1,2,3,40r5.

After running the above experiment all the log files will bersd in ./tmp.

Once the experiment is complete we can use scorer.py to aratié perfor-
mance. To view the L1 performance we issue the command:

scorer.py ./tnp/elie.speaker.*.elie.L1.1o0g
To view the L2 performance we would use the following command

scorer.py ./tnp/elie.speaker.*.elie.L2.1|o0g
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