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Abstract

Information Extraction (IE) is the process of identifying aset of pre-defined rele-

vant items in text documents. We investigate the application of Machine Learning

classification techniques to the problem of Information Extraction. In particular

we use Support Vector Machines and several different feature-sets to build a set

of classifiers for Information Extraction (IE). We show thatthis approach is com-

petitive with current state-of-the-art Information Extraction algorithms based on

specialized learning algorithms. We investigate the different components of our IE

system, such as learning algorithm, feature-set and instance selection, and com-

pare how much each component contributes to performance. Wealso introduce

a new multi-level classification technique for improving the recall of IE systems.

We show that this can give significant improvement in the performance of our

IE system and gives a system with both high precision and highrecall. Our sys-

tem (ELIE) is an adaptive Information Extraction algorithm that usesa two-level

boundary classification approach to learning. ELIE first classifies every document

position as the start of a fragment to be extracted, the end ofa fragment, or neither.

This first level of extraction typically has high precision but mediocre recall. To

increase recall, we employ a second level of classification.Positions near those

positions extracted at the first level are classified by a second pair of classifiers that

are biased for high recall. For example, the positions “downstream” from each ex-

tracted start position are classified in order to find the end of the given fragment.

Our results on several benchmark corpora indicate that ELIE often outperforms

state-of-the-art competitors.



Chapter 1

Introduction

1.1 Motivation

There are a huge number of electronic documents in the world today. Many are

available on the world wide web while many others exist within organizations.

These documents are often in unstructured or semi-structured format. Email and

text documents often have little structure or some arbitrary structure that is defined

by the document’s author.

Information Extraction (IE) is the process of identifying aset of pre-defined

relevant items in text documents.

IE has many applications. It can improve information retrieval and text mining

by identifying entities in free text. It can extract structured data from unstructured

text to create structured databases. It can be used to automatically add semantic

annotation to web-pages.

It enables structured data to be built from unstructured or semi-structured text

sources. It can be used to create a structured database from unstructured text. For

example, a company may receive hundreds of resumes by email from potential

employees. These will all be in some kind of structured textual format but this

format will vary from resume to resume. It is difficult to compare and form com-

plex queries over all the resumes in their textual form. IE techniques can be used

to extract the relevant items from the text documents and construct a relational

database from the data. This allows for complex queries to beconstructed over
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all the resumes e.g. “Find me all the applicants that have more than 3 years ex-

perience, are under the age of 25 and have listed java-programming as a skill”.

It would be very difficult to perform such a search using keyword matching over

the raw text of the resumes. IE can automatically identify and extract the various

elements of the text that we are interested in.

The huge number of documents on the world-wide-web exhibit similar prob-

lems when it comes to formulating complex queries. Current search systems such

as Google excel at retrieving documents according to what keywords they match

but they do not allow for more complex queries. Current search methods see web

documents as sequences of tokens. Searching consists of matching documents

which contain the same tokens as the query and then ranking them according to

some ranking metric such as the number of links that point to them. The se-

mantic web initiative aims to address this problem by addingsemantic mark-up

to documents when they are created. This semantic information will facilitate

more complex searching of documents on the web. However the vast majority of

documents on the web contain no semantic mark-up. IE can be used to identify

semantic entities in text and web documents. IE can facilitate the semantic web

by automating the process of adding semantic mark-up to documents.

Information extraction can be done manually by having an expert user create

rules that will extract the desired entities. This is a difficult, expensive and time-

consuming process.

We are interested in Automated Information Extraction. Figure 1.1 shows

what we mean by automated IE. A human annotator annotates examples of the

entities that we want to extract. These annotated documentsare used as examples

for a Machine Learning algorithm. It uses these labelled examples to learn a set

of rules that can be used to extract the entities. Thus the role of the human is

reduced to labelling example entities in documents rather than having to construct

complex sets of rules. The complexity of identifying the best rules is left to the

learning algorithm.

3



Figure 1.1: Automated Information Extraction

1.2 Contributions

Numerous IE systems based on Machine Learning techniques have been proposed

recently. Many of these algorithms are “monolithic” in the sense that there is no

clean separation between the learning algorithm and the features used for learning.

Furthermore, many of the proposed algorithms effectively reinvent some aspects

of Machine Learning rather than exploit existing Machine Learning algorithms.

It is not obvious which aspects of each system contribute to its performance and

how much each contributes.

We investigate how relatively “standard” Machine Learningtechniques can

be applied to Information Extraction. We adopt the standard“IE as classifica-

tion” formalization [20, 12], in which IE becomes the task ofclassifying every

document position as either the start of a field to extract, the end of a field, or nei-

ther. We then break down the different components of this system and investigate

how each component contributes to and affects the performance. We investigate

4



attribute filtering, the effect of different feature-sets and the effect of choice of

learning algorithm. We investigate the problems caused by data imbalance on the

IE task and investigate different instance-undersamplingstrategies.

Based on this initial system, we then describe enhancementsto this basic ap-

proach that give higher performance on a variety of benchmark IE tasks. Our

enhancements consist of combining the predictions of two sets of classifiers, one

set with high precision and one with high recall.

The intuition behind this approach is as follows: We assume the base classi-

fiers have high precision and predict very few false positives. To extract a fragment

we need to identify both its start and end tags. If the base classifier predicts one

tag (start or end) but not the other we assume that it is correct. We use this predic-

tion as a guide to a second classifier to try and identify the missing complementary

tag.

We make three contributions. First, we show that the use of anoff-the-shelf

support vector machine implementation is competitive withcurrent IE systems

based on specialized learning algorithms. Second we investigate the effects of

each component of the system (features, instances, learner) on the overall perfor-

mance. Third, we introduce a novel multi-level boundary classification approach

and demonstrate that this new approach outperforms currentsystems.

1.3 Organization

The rest of this thesis proceeds as follows. Chapter 2 describes some background

in the area of Machine Learning and applying it to text. It describes some of the

other state of the art IE systems.

Chapter 3 describes the standard benchmark datasets that are commonly used

to evaluate IE tasks. We describe each of the datasets used. We also discuss the

issue of how to evaluate an IE system. We describe some of the shortcomings

of how previous systems have been evaluated and discuss how IE systems should

correctly be evaluated. We evaluate our own system using a conservative method-

ology for comparison to other IE systems and we describe thismethodology here.

Chapter 4 describes our basic approach that treats IE as a token classification

task. This approach uses a generic Machine Learning implementation and a fea-

5



ture representation that represents the relational natureof the IE task. We show

that this approach is competitive with other state of the artIE systems that use

specialized learning algorithms.

In chapter 5 we delve into this system further and investigate which parts of it

contribute to performance. We investigate the effect of various features-sets that

our IE system uses. We investigate the effect of varying the learning algorithm.

We also investigate the effect of filtering the attributes from our representation.

In chapter 6 we investigate the effect of instance filtering on our IE system.

Because we are using SVMs for learning we only need the instances that make up

the support vectors for learning. Our representation results in a large number of in-

stances but in fact we can filter the majority of them without significantly affecting

performance. We investigate two approaches to filtering negative instances. The

first selects random negative instances for filtering. The second approach filters

instances in a more focused manner. It filters negative instances that contain to-

kens that are unlikely to occur in the positive instances. These instances are also

unlikely to be part of the support vectors.

Chapter 7 extends the IE system that we have developed in the preceding chap-

ters. It adds a second level of classifiers. This second levelof classifiers is de-

signed to have high recall. It is combined with the first set ofclassifiers which

have high precision and it uses their predictions to filter its own predictions. This

produces a new set of predictions that have higher recall butmaintain high preci-

sion. We show experimentally that this approach gives significant improvements

in performance.

Chapter 8 analyzes and discusses our IE system’s performance on the Pascal

challenge, a recent challenge task for Information Extraction.

Chapter 9 further generalizes our two-level approach and addresses the prob-

lem of representing relational information between different fields. It adds a third

level of classifiers. This third level aims to use relations between fields to improve

performance. This level uses the predictions for all the different fields to add

features to the representation that encode relationships between fields and then

relearns the models using these new features.

Chapter 10 presents our conclusions and suggests directions for future work.
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Chapter 2

Background and Related Work

2.1 Overview

In this chapter we describe the work related to our research and background from

related fields.

We give an overview of Machine Learning and describe some Machine Learn-

ing algorithms. We describe previous work in Text Classification and how the text

classification problem is represented for Machine Learning.

We describe the Support Vector Machines algorithm in detailand in particular

we discuss Support Minimal Optimization (SMO). SMO is specialization of the

SVM algorithm which we use for learning the classifiers that our IE system uses.

We describe the operation of several other well-known IE algorithms.

2.2 Machine Learning

In this section we present an overview of the Machine Learning approach to auto-

matically building classifiers. We describe the Machine Learning algorithms that

we used for our experiments.
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2.2.1 The Learning Process

Machine Learning involves learning from examples. It uses aset of training ex-

amples to extrapolate and learn patterns, and to learn correlations between the

features that are used to represent each example and some specified concept. Ma-

chine Learning has been widely used for document classification and many other

applications. Document classification is of particular interest to us as many of

the techniques can be adapted to IE. The Machine Learning approach to docu-

ment classification takes a set of pre-classified examples and uses these to induce

a model which can be used to classify future instances. The classifier model is

automatically induced by examination of the training examples. The human effort

in this process is in assembling the labelled examples and choosing a representa-

tion for the training examples. A human must initially decide what features will

be used to describe the training examples, and represent thetraining documents

with respect to these features.

When using Machine Learning algorithms, we first identify the concept to be

learned. This concept is what we want the classifier to be ableto classify; in our

case this is whether a token is a start or an end of a field.

The type of learning we are interested in is classification learning. In this

learning scheme, the learner takes a set of labelled pre-classified examples. The

learner is then expected to induce ways of classifying unseen examples based on

the pre-classified examples given. This form of learning is supervised in that the

training examples are provided and labelled by a human overseer.

The training data is a set of instances. Each instance is a single example of the

concept to be learned. Instances are characterized by a set of attributes where each

attribute measures a certain aspect of the concept being described. Attributes can

be discrete or continuous. Continuous attributes represent some numerical value

that can be measured. Discrete attributes assign the attribute to membership of a

particular category.

Figure 2.1 shows an example Machine Learning dataset. The dataset contains

24 instances and 4 attributes. Each of the attributes is discrete i.e. they can take

only certain pre-defined values. The attributes are:

1. Age of the patient.
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Figure 2.1: Contact lens data: An example Machine Learning task

2. Spectacle prescription.

3. Whether the patient is Astigmatic.

4. The patient’s tear production rate.

The class to be predicted in this case is whether the patient should have hard con-

tact lenses, soft contact lenses or no contact lenses. Each instance is an example of

a patient. Each patient is described in terms of the 4 attributes and whether or not
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they received contact lenses. The task of a Machine Learningalgorithm is to look

at the example instances and try to learn patterns that will predict whether future

patients will need contact lenses based on the attribute values for that patient.

This task is a simple illustrative task. The example instances contain all possi-

ble combinations of attributes and values, making it easy for a learning algorithm

to learn rules that make predictions for future instances. This dataset can be cov-

ered with a rule-set consisting of only nine rules.

This dataset is very simple in comparison to most Machine Learning tasks. It

has a small number of attributes and it has an example instance for every possi-

ble attribute-value combination. The examples can be covered with a small set

of rules. Our IE task is much more complex than this example dataset. It gener-

ally consists of tens of thousands of instances and attributes. It generally takes a

large set of rules to cover the entire dataset and the number of rules and instances

that would be required to enumerate all possible attribute-value combinations is

prohibitive.

There are many other well known datasets that are used to evaluate Machine

Learning research. These are collected in the UCI repository [17] and cover

many different tasks and are of varying complexity. Examples include predict-

ing whether a patient has breast-cancer, diabetes, heart-disease, hepatitis, thyroid-

disease, how a person votes and whether a person has a good credit rating.

2.2.2 Some Machine Learning Algorithms

In this section we describe some well known Machine Learningalgorithms. The

selection described are widely used and cover different broad approaches to Ma-

chine Learning. Some of them are similar to approaches used by the IE systems

that we describe in section 2.5. OneR is a simple approach that is useful as a base-

line and gives an indication of the complexity of a task. Naive Bayes is a proba-

bilistic approach based on Bayes’ rule that is widely used for Text Classification.

ID3 is a decision tree induction approach. Winnow is designed for datasets with

large numbers of irrelevant attributes and is used by the Snow-IE system. Ripper

is a rule induction algorithm that is broadly similar to the rule-indication algorithm

used by RAPIER and (LP)2.
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For each attribute
For each value of that attribute:

Make a rule that assigns the most frequent class of
this value to this value

calculate the error-rate of each rule.
Choose the rule with the smallest error rate.

Figure 2.2: OneR: An algorithm for induction of one-level decision trees

OneR is a simple learning algorithm for generating one leveldecision trees. It

is one of the most basic of Machine Learning algorithms but has been shown to

do remarkably well on many common Machine Learning datasets.

OneR generates a set of rules that classify an example instance based on a

single attribute. Each attribute generates a set of rules, one for each value of the

attribute. The error rate is evaluated for each attributes rule-set and the rule-set

with the lowest error rate is chosen. Figure 2.2 shows the OneR algorithm.

Despite its simplicity, OneR performs well on many classification tasks. Holte

[23] showed that OneR does surprisingly well in comparison to many state of

the art algorithms on several commonly used datasets. It is on average just a

few percent less accurate, but generates substantially simpler models and smaller

trees. OneR can be used as an approximation of the complexityof a learning task.

If OneR performs well on a learning task it indicates that it is not a particularly

complex task as there is a lot of information in single attributes and complex

combining of attributes is not necessary to learn the task.

ID3 [39] is an algorithm for top-down induction of decision trees. In the re-

sulting decision tree, each node corresponds to an attribute. Each arc from the

node corresponds to a possible value of that attribute. Eachleaf describes the ex-

pected value of the discrete attribute for an instance described by the path from

the root node to that leaf.

Each node should be associated with the attribute that is most informative

among those not yet considered on the path from root to node. The notion of

entropy is used to measure how informative an attribute is. In particular a measure

of Information Gain is used to choose the most informative attribute.

Figure 2.3 shows a simple decision tree induction algorithmsimilar to that

used by ID3. It uses a measure of Information Gain to choose which attribute to
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DecisionTreeInduce(attributes,instances):
Select an attribute to place at the root node
Make a branch for each possible value
if all instances have the same classification: break
For each branch:

DecisionTreeInduce(attributes not used reaching this branch,
instances that actually reach this branch)

Figure 2.3: ID3: An algorithm for decision tree induction

split on. The Information Gain of each attribute is calculated and used to choose

the attribute with the highest Information Gain.

Another simple method is to use all attributes to calculate the probability of an

instance belonging to a category based on the observed training data. This tech-

nique is called Naive Bayes [32] and is based on Bayes’ rule. It naively assumes

independence between attributes. Despite this assumption, Naive Bayes works

well in practice, particularly when used on datasets that have fairly independent

attributes. Naive Bayes can rival or outperform more sophisticated algorithms on

many datasets and has been widely used for Text Classification.

Winnow [33] is an algorithm that is designed to deal with large numbers of

irrelevant attributes. It consists of a threshold and a set of weights for all the

attributes. For an instance, it predicts that it is a member of the positive class if

the sum of all the weights for the instance’s attributes is greater than the threshold.

Learning consists of setting the attribute weights and adjusting them to minimize

error on the training set.

Ripper [14, 13] is a fast rule-learning algorithm. It learnsa set of if-then rules.

The left hand side of each rule is a set of conditions and the right hand side is

a classification. Ripper builds an initial set of rules and then optimizes them a

pre-defined number of times. It is a covering algorithm. It builds rules greedily,

one at a time. After a rule is constructed each example that iscovered by that

training algorithm is removed from the training set. This process continues until

each example in the dataset is covered or until new rules havea high error rate.

Each rule is just a conjunction of features.
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2.2.3 Support Vector Machines

Support Vector Machine (SVM) [15, 7] is a Machine Learning algorithm for bi-

nary classification. Given a set of example instances, each instance labelled as

being a member of one class or the other, the SVM algorithm identifies a hyper-

plane that separates the two classes.

If each attribute is represented byn attributes then each instance can be plotted

by a point in ann-dimensional space. The hyperplane separates the instances

in this space. For a two-dimensional space the hyperplane isa line, for a three

dimensional space the hyperplane is a plane and so on for higher dimensional

spaces.

SVMs create a maximum-margin hyperplane between two classes that lies in

a transformed input space. It tries to maximize the distanceof closest examples to

the hyperplane (margin). The feature space is a non-linear map from the original

input space, usually of much higher dimensionality than theoriginal input space.

In this way, non-linear classifiers can be created. If there exists no hyperplane that

can split the positive and negative examples, the soft margin method will choose a

hyperplane that splits the examples as cleanly as possible,while still maximizing

the distance to the nearest cleanly split examples.

SVMs select a small number of important boundary instances from each class

and attempts to find a function that linearly separates them.An important aspect

of the SVM algorithm is the ability to seperate instances that are not linearly

seperable. The SVM algorithm transforms the instance space, which may not be

linearly separable, to a new instance space where the classes are linearly separable.

They find the maximum margin hyperplane between two classes.It does this using

the kernel trick. The kernel trick uses a non-linear kernel function to transform

the instances to another instance space where they are linearly seperable.

Figure 2.4 shows a simple two-dimensional hyperplane. In this example each

instance has only two attributes (x and y), so we can plot the instances on a 2D

graph as shown. The task of the learning algorithm is to find a hyperplane that can

separate the instances into the positive and negative classes. In a two-dimensional

space the hyperplane is a line. The example shows several possible hyperplanes

that can split these examples (the dashed lines). This example is linearly sep-
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Figure 2.4: A hyperplane in two dimensions

arable in the original instance space, i.e. we can draw a linethat separates the

instances. When this is not the case, SVM maps the instances into another higher

dimensional instance feature space where the instances arelinearly separable. The

SVM algorithm finds the maximal margin hyperplane (the solidline). The maxi-

mal margin hyperplane is the one that gives the greatest separation between classes

- it is as far from each class as it can be.

The instances that are closest to the hyperplane are called the support vectors.

There is at least one support vector for each class and usually more. The sup-

port vectors are sufficient to define the maximum margin hyperplane, i.e. we can

construct the maximum margin hyperplane given only the support vectors. The

instances that are not in the set of support vectors can be deleted or ignored with-

out having any effect on the position or angle of the hyperplane. In the example

of figure 2.4 the examples are linearly separable. If they arenot the SVM algo-

rithm can map them into another higher dimensional space where they are linearly

separable (see figure 2.5).

SVM is currently one of the best learning algorithms for TextClassification

[28] and has been successfully applied in many domains.

We use the Support Minimal Optimization (SMO) [38] algorithm. SMO is

an SVM algorithm that is particularly suited for linear SVMsand sparse datasets.

It exploits the sparseness of the data to improve performance. It replaces the

quadratic programming inner loop of the SVM algorithm with aheuristic analytic

quadratic programming step. It breaks down the quadratic programming problem
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Figure 2.5: SVMs can map instances that are not linearly separable into another
instance space where they are separable

into a series of smaller quadratic programming problems andat every step chooses

to solve the smallest possible optimization problem.

2.3 Machine Learning and Text

Automatic Text Classification is the task of automatically assigning a document

to one of a set of categories [44].

A typical application involves assigning documents to a pre-defined set of

categories based on the topic of the document. An example of such an experiment

is given in [27]. Data was collected from 20 newsgroups with 1000 documents

collected from each. The task of the classifier was to automatically recognize

which newsgroup a document came from. A Naive Bayes classifier achieved an

average accuracy of 89% on this task.

There has been a large amount of work in the application of Machine Learning

techniques to Text Classification (TC). The CORA system [34]is a hierarchical

catalogue of computer science research papers. Documents are automatically spi-

dered from the web and Machine Learning techniques are used to assign the docu-

ment a place in the subject hierarchy. YahooPlanet [35] usesthe Yahoo! hierarchy

as a basis for automatic document categorization and applies Machine Learning

techniques to the task of automatically assigning web documents to a category
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within this hierarchy. Chen and Dumais [10] describe a system that automatically

classifies search results into an existing category structure. Machine Learning ap-

proaches to text categorization have been successfully applied to the problem of

spam filtering [43]. Spam filtering is the task of automatically recognizing and

filtering spam email. Using Machine Learning for spam filtering is now a popu-

lar approach to the problem of automatic spam filtering. The Thunderbird email

client uses a Naive Bayes classifier to filter junk mail. Apple’s mail client uses

Latent Semantic Analysis [16] for spam filtering.

When applying Machine Learning to text, the text is usually represented using

the bag-of-words vector space model. Every token that occurs in all the training

documents is a feature for the learner. Each document is represented as a binary

vector of all these features.

TC and IE have some similarities but they differ in importantways. When

using ML for TC, the task is to classify entire documents intocategories. With IE,

we are not classifying entire documents into classes. Instead we seek to identify

fragments of documents that are of interest. With TC a singledocument is an

example of a class but with IE a document may contain examplesof several classes

of interest. We are classifying the individual tokens of a document rather than the

documents.

TC consists of a single classification task. Each model classifies a document

as being a member of a class or not. IE consists of several classification tasks: for

each token we must identify whether it is the start of a field and whether it is the

end of a field. We must then combine the predictions of starts and ends to decide

which combinations are fragments that should be extracted.

IE is a sequential task. With TC there it is assumed that thereis no sequential

relationship between the different documents being classified. With IE there is a

strong relationship between each token being classified andthe previous and next

token being classified. We must extend the standard TC representations to take

account of this sequential information. IE can be thought ofas Text Classification

at the token level with the additional need to represent sequence information be-

tween tokens. In traditional classification tasks such as TC, the classification of

one object does not affect the classification of another, whereas in classification

for IE, the class of one token depends on and affects the classof nearby tokens.
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The large body of work in using ML for TC gives us a starting point in using

ML for IE. We can reuse the learning algorithms and representations that have

been widely used in the TC domain. We use similar representations for our in-

stances but extend them to represent the sequential information between tokens.

Existing IE systems are often monolithic systems that uses their own algorithms

and representations for the IE task rather than taking advantage of the existing

work in TC and ML. We can reuse much of the work that has been done in using

ML for TC and apply it to IE with suitable modification.

2.4 The Semantic Web

The semantic web [4] is an extension to existing web standards that enables se-

mantic information to be associated with web documents. Thecurrent www is

designed for humans. It is not designed to be easily understandable by machines.

The aim of the semantic web is to make web documents easier formachines to

understand. It enables machine-readable information about the meaning of docu-

ments to be added to them.

For example, consider a page listing all the members of the Department of

Computer Science at a University. Current search engines would treat it as a list

of tokens with no information about what each of the tokens means. The semantic

web enables us to encode extra meaning in the document about the meaning of the

document and its various entities. For example, it would enable us to identify each

entity listed as a person, and more specifically a computer scientist. Each person

might have a name, web-site, email address and research interests associated with

them. Using the semantic web enables machines to identify the concepts within a

document. Suppose we wish to search for all computer scientists currently work-

ing in American universities in the area of artificial intelligence. Such precise

queries are not possible using current search methods. If all web pages have se-

mantic information associated with them this kind of query becomes easy.

The vast majority of current web pages have no semantic information asso-

ciated with them. One of the barriers to the adoption of the semantic web is the

difficulty in adding semantic annotations to large amounts of text. The ability to

automatically add semantic annotations would be of huge benefit to adoption of
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the semantic web [11]. IE is one process that can be used to bootstrap the seman-

tic web by automatically identifying entities in existing web documents and using

this information to add semantic annotations to the documents.

2.5 Information Extraction

In this section we discuss and compare some of the more prominent adaptive IE

algorithms. These are the systems that we will compare our own against and are

considered the state of the art in IE. They are the systems listed in the IE survey

paper by Lavelliet al.[31].

2.5.1 Rapier

Rapier [8] uses inductive logic programming techniques to discover rules for ex-

tracting fields from documents. It does not try to identify start and end tags sep-

arately, but learns to identify relevant strings in their entirety. Rapier performs

specific-to-general bottom-up search by starting with the most specific rule for

each positive training example and repeatedly trying to generalize these rules to

cover more positive examples. Rapier uses as its features the tokens, part-of-

speech information and some semantic class information.

Rapier uses a different representation to the other IE systems. Rather than

marking occurrences of fields in the text with an XML-like syntax, it takes a tem-

plate filling approach. Associated with each text is a template containing the fields

for that text. This approach does not distinguish between different occurrences of

a field and doesn’t allow for ambiguous text. For example, a job advertisement

might have a template that contains ‘platform:windows’. This approach doesn’t

allow us to represent the occurrence of the word ‘windows’ inthe text in contexts

other than platform. The task of the IE algorithm is to fill thetemplate rather than

to identify all occurrences of a field in the text.

Rapier’s learning algorithm consists of specific to generalsearch. It starts with

the most specific rule-set for all the training examples and proceeds by replacing

sets of rules with more general ones. The rules that Rapier learns consist of three

parts: a pre-filler, a post-filler and a filler. The pre-filler matches the text before
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the field, the post-filler matches the text after the field and the filler matches the

actual field. Each pattern is a sequence of elements that thatcan be matched. As

features, it uses only the actual tokens and their POS tags. For the initial rule-set

the most specific rule for each example is created using the word and POS tags

for the filler and its complete context. The initial rule-setis as specific as possible,

consisting of a filler pattern of the exact tokens for the filler, a pre-filler pattern of

all tokens that precede the filler in the document and a post-filler pattern of all the

words that follow the filler in the document. Rapier then proceeds to generalize

these rules by selecting pairs of rules and generalizing them by getting the least

general generalization of each pair of rules. To consider all possible pre- and post-

filler patterns would be prohibitive so Rapier starts generating pre- and post-fillers

from the filler outwards. It maintains a list of thek best rules and repeatedly adds

generalizations of the pre- and post-filler seed rules, working outward from the

filler. The rules are ordered by Information Gain and weighted by the size of the

rule, with small rules being preferred. When a rule gives no bad predictions on

the training examples it is added to the final rule-base replacing any less general

rules that it renders superfluous.

2.5.2 Boosted Wrapper Induction

Boosted Wrapper Induction (BWI) [20] learns a large number of simple wrap-

per patterns, and combines them using boosting. BWI learns separate models

for identifying start and end tags and then uses a histogram of training fragment

lengths to estimate the accuracy of pairing a given start andend tag. BWI learns to

identify start and end tags using a form of specific-to-general search. BWI’s fea-

tures consist of the actual tokens, supplemented by a numberof orthographic gen-

eralizations (alphabetic, capitalized, alphanumeric, lower-case, numeric, punctu-

ation), as well as a modest amount of lexical knowledge (a list of first and last

names).

Boosting is a technique for improving the performance of learning algorithms

by repeatedly learning from the training examples, each time changing the weights

associated with individual examples. Each round of boosting pays more attention

to examples that were difficult for the previous round.
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Boosting works by combining multiple models. Each of these models can

make a prediction for a particular instance and the predictions of all the models

are combined according to how accurate each model was on the training data.

Each model is built based on the previous model and focuses oninstances that

were difficult for the previous model.

Other systems attempt to learn rules that cover as many examples as possi-

ble. BWI learns rules that are specific and have high precision and limited recall

but learns lots of them. This “weak” learning algorithm is then improved using

boosting. It is repeatedly applied to the training set and each time the weights

associated with each example are changed to emphasize examples on which the

learner has done poorly on previous steps.

BWI treats IE as a token classification task, where the task isto classify each

token as being a boundary that marks the beginning or end of a field. It builds

up a set of patterns from the training set. It builds two sets of patterns - one for

detecting starts of boundaries and one for detecting ends ofboundaries. When

starts and ends are identified, a fragment is extracted basedon the probability of a

fragment of that length occurring.

2.5.3 (LP)2

(LP)2 [12] learns symbolic rules for identifying start and end tags. Like BWI, it

identifies the starts and ends of fields separately. In addition to token and ortho-

graphic features, (LP)2 uses some shallow linguistic information such as morpho-

logical and part-of-speech information. It also uses a user-defined dictionary or

gazetteer. Its learning algorithm is a covering algorithm which starts with specific

rules and tries to generalize them to cover as many positive examples as possible.

This process is supplemented by learning correction rules that shift predicted tags

in order to correct some errors that the learner makes.

It operates in two steps. The first step uses a simple bottom-up generalization

process to learn a set of tagging rules. The second step learns a set of correction

rules that correct errors made by the tagging rules.

The first step involves learning a set of tagging rules. Each rule attempts to

identify either the start or the end of a fragment, rather than trying to recognize
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whole fragments at once. (LP)2 takes a classification approach to IE with each

start or end of a fragment being a positive example and all other instances being

negative examples.

It proceeds as follows: for each positive example: 1) build an initial rule, 2)

generalize the rule, 3) keep thek best generalizations of the rule and discard the

rest.

The generalization process consists of taking the specific initial rule and try-

ing to generalize it with some information gained from shallow NLP analysis. For

example ‘at 3 pm’ might be generalized to ‘at [digit] pm’. This could be further

generalized to ‘at [digit] [timeid]’. Once (LP)2 has generated all the generaliza-

tions, the next step is to select the best generalizations. Each generalization is

tested on the training corpus. Thek best generalizations are kept that 1) have bet-

ter accuracy, 2) cover more positive examples, 3) cover different parts of the input

and 4) have an error rate that is less than some specified threshold. Rules that are

not discarded at this step are added to a best rules pool. Instances that are covered

by a rule in the best rules pool are removed from the positive examples. Thus once

an instance has been covered by a rule, it is no longer used forrule induction.

Once the initial set of tagging rules has been generated, (LP)2 tries to learn

contextual rules. The initial rule-set tends to have high precision but low re-

call. This phase attempts to increase recall by learning what are termed contextual

rules. Some of the discarded rules are retrieved and (LP)2 attempts to constrain

their application to make them reliable. This constraint isderived by exploiting

interdependencies among tags. The first rule pool was derived by assuming that

all tags were independent. This is not always the case. For example, if we identify

anstime, then anetimemay follow. Some rules that were previously discarded are

re-introduced with constraints if adding the constraint improves the rules perfor-

mance. For example, A rule that identifies a start ofetimemight only apply if an

end ofstimehas already been identified.

(LP)2 also attempts to induce correction rules. These rules attempt to learn to

correct mistakes. For example, If the system extracted 3 from the fragment ‘at 3

pm’, the system tries to learn a correction rule that would shift the end boundary

to the correct token. These correction rules learn to shift the position of tags that

have already been identified and they are learned using the same process as the
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tagging rules.

The use of contextual rules means that (LP)2 is strong for related fields as it

can exploit the dependence between them. (LP)2’s learning algorithm is fairly

simple. It seems likely that it performance comes from the ability to generalize

using NLP features and the ability to use information about other tags to exploit

relationships between tags.

2.5.4 SNoW-IE

SNoW [41] is a relational learning algorithm that is specifically tailored towards

large-scale learning tasks such as IE. SNoW-IE [42] is an IE system based on

SNoW. It identifies fragments in their entirety rather than separately identifying

start and end tags. It uses token, orthographic, POS and semantic features.

SNoW-IE learns in two stages. The first stage is a filtering stage. The set of all

possible fragments is filtered to a small number. The aim is tofilter out irrelevant

negative instances without filtering positive instances. Afragment is filtered if it

matches one of 2 criteria: 1) it doesn’t contain a feature that is common in the pos-

itive examples or 2) the fragment’s confidence value is belowa certain threshold.

The first stage has high recall, while the second stage has high precision.

SNoW-IE uses relational learning for IE. Specifically, it uses a restricted form

of Inductive Logic Programming (ILP). This system does not treat identifying

starts and ends as separate token classification tasks. It extracts fragments in their

entirety. It proceeds by identifying all candidate fragments in a document. Each

of these fragments is represented using a set of defined features. Features are

extracted from three regions: the fragment itself, before the fragment and after the

fragment.

The second stage involves picking the correct fragments from the fragments

that remain. The second stage uses an enhanced representation to improve perfor-

mance. The remaining fragments are used to train a classifierfor each field.

2.5.5 Hidden Markov Models and Conditional Random Fields

A Hidden Markov Model (HMM) is a probabilistic finite state automaton for mod-

elling sequential data. Each state omits tokens according to some fixed distribu-
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tion. The transition between states also conforms to some fixed distribution. When

using HMMs for IE, the states represent the fields to be extracted. For example,

there would be states for the start and end of each field and a state for none of the

fields (background state). There are efficient algorithms for generating the most

likely state sequence for a given document. HMMs can be used for IE by deter-

mining the sequence of states that were most likely to have generated the entire

document, and then extracting the symbols associated with the fields we wish to

extract.

Freitag and McCallum [21] describe an approach to using HMMsfor IE. The

HMM models a generative process where a sequence of symbols is generated by

starting at some start state, generating the symbol designated by that state and

transitioning to the next state. The process of generating asymbol and transition-

ing to a new state is repeated until a final state is reached. Associated with each

possible set of states is a probability distribution over all symbols in the vocabu-

lary and a probability distribution over a set of transitions to the next state. These

probabilities are learned from the training date. A dynamicprogramming algo-

rithm called the Viterbi algorithm is used to find the most likely state sequence

given a HMM and a sequence of symbols. They generate independent HMMs for

each field to be extracted. Each model has two states - background state and target

state. The target state produces the field that we wish to extract.

One of the weaknesses of using HMMs for IE is that it is difficult to model

several different features for each token. As well as observing that a particular

word occurred in the sequence, we may wish to observe that it was also capitalized

and that it was the start of a noun phrase. Representing theseextra features for the

sequence is prohibitively difficult for HMMs.

Conditional Random Fields (CRFs) [29] are an approach that allow the use

of arbitrary features in modelling the observed sequence. CRFs define a condi-

tional probability distribution over labelled sequences rather than a joint distribu-

tion over pairs of labels and observation tokens. This allows the model to include

arbitrary non-independent features as input.

To date CRFs haven’t been extensively applied to the standard IE benchmark

datasets but they have been shown to perform well on other IE tasks [37]. The

ability to combine several different features for each token and probabilistically
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model relationships between fields means that they are a verypromising algorithm

for IE.

2.6 Summary

This chapter covered background material and related research. We gave an

overview of the Machine Learning process and described several Machine Learn-

ing algorithms. We described how Machine Learning is used for Text Classifica-

tion. We also described several state-of-the-art IE algorithms: Boosted Wrapper

Induction, Rapier, (LP)2, SNoW-IE and Hidden Markov Models.
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Chapter 3

Datasets and Evaluation for

Information Extraction

There are several standard datasets that are used to evaluate the performance of

Automated Information Extraction systems. These datasetsare annotated by hu-

mans and the annotations are used as examples from which an IEsystem can learn

generalization rules. In this chapter we will describe the datasets used for evalua-

tion. We will also describe how we evaluate our system and discuss some of the

issues surrounding the evaluation of IE systems. It is difficult to compare each of

these systems directly for several reasons. First, there are a variety of “simple”

methodological differences (e.g., using a slightly different scoring mechanism)

[31]. More significantly, most of the literature reports only results for the system

in its entirety. It is difficult to know how much of the performance differences

arise from different feature sets, how much from different learning algorithms,

and how much from differences in experimental procedure.

3.1 The Annotation Process

Before a dataset can be used for Automated Information Extraction it must be an-

notated. This involves identifying and marking all occurrences of the pre-defined

fields that we wish to extract. All the datasets that we use forevaluation are al-

ready annotated and have been used widely by the IE communityfor evaluation.
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However the annotation process itself is complex and deserves attention. All of

the standard datasets contain annotation errors and inconsistencies. Annotation is

the most time-consuming part of any new IE task.

The process of annotating documents for Automated Information Extraction

involves identifying and marking the entities of interest in the text. This can be

broken into several tasks. The first task is to identify what entities we are in-

terested in extracting. The second task is to decide on a representation for the

annotations. The third is to manually identify and mark the occurrence of the

entities in the document corpus.

3.1.1 Defining what is to be Extracted

The first task is to identify and define the entities that we areinterested in extract-

ing from the document collection. Many of the entities that are of interest may be

obvious from the dataset or from the particular extraction task. However it is im-

portant to define precisely what the entities are and what constitutes membership

of a particular entity class. There may be some ambiguity as to how the entity is

defined and how exactly to identify membership of the entity class. For example,

in the Seminar Announcements dataset one of the fields of interest is location.

This fields denotes thelocationof a particular seminar. There is some ambiguity

in how locations are annotated however. If a document contains a string suchas

‘room B2.18, Computer Science Building, University College Dublin’, should we

annotate as alocation‘room B2.18’, ‘Computer Science Building’, ‘room B2.18,

Computer Science Building’ or ‘room B2.18, Computer Science Building, Uni-

versity College Dublin’?

Similarly, if we are to extract a time field, we must define whatconstitutes a

time. Precise examples of times include ‘3:00’, ‘3pm’ and ‘3.p.m.’. We should

define whether we allow more general time descriptions such as ‘early afternoon’,

‘later today’ and ‘at the weekend’. Specifying in detail thefields that are to be

extracted will result in higher annotation accuracy and less ambiguity in the an-

notations.
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3.1.2 Annotation Syntax and Representation

The second task is to decide on a representation for the annotation. We are con-

cerned with implicit relation extraction. The relations between different fields are

implicit rather than explicit.

The simplest representation is to mark the start and end of each occurrence

of a field in the text. Datasets are typically annotated for Information Extraction

using a simple start and end syntax:<field-name>This is a field</field-name>.

This is the approach to annotations that our system used. It is also the approach

that is used in most of the IE systems that we compare to and in the datasets that

we use for evaluation.

This approach marks every occurrence of a field in a document.Another ap-

proach is the template mark-up approach. This approach was used by Rapier and

was used to annotate the original Job Postings corpus. With this approach ev-

ery document has an template associated with it which contains the values for

each field. The template representation doesn’t allow for occurrence of strings

that match a target field in contexts outside of the target fields. As an example

consider a job posting that has ‘windows’ as a requiredplatform. The template

associated with this job posting will specify ‘windows’ as theplatform. However

if the token ‘windows’ occurs in the document in contexts other thanplatform,

this approach cannot represent that extra information. It must assume that all oc-

currences of the token ‘windows’ in the document are examples of theplatform

field.

These methods of annotation are limited in that they don’t allow us to represent

different forms of the same entity or relationships betweenentities. For example,

if a document hasspeakers ‘Professor Sara Kiesler’, ‘Prof. Kiesler’, ‘Woody

Vaskula’, ‘Vaskula’ we cannot represent the fact that the first two strings refer to

the same entity and the third and fourth refer to the same entity which is different

to that referred to by the first two.

Figure 3.1 shows an example of the standard approach to annotation that is

used for the benchmark IE datasets. It also gives an example of a slightly richer

annotation scheme that allows us to associate annotations with entities.

The lack of richness in the standard annotation schema givesrise to problems
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Figure 3.1: Approaches to annotation for Automated Information Extraction

when it come to evaluating IE systems. Using the second method of annotation

would allow us to perform a more correct form of evaluation. We will discuss

these problems in more detail in section 3.3.

3.1.3 Annotating the Documents

The outcome of the processes described in the previous two sections is a set of

annotation guidelines that are used to annotate the documents in the dataset. Even

with concise and well defined guidelines annotation is a timeconsuming and error

prone process. Human annotators can become tired and lose concentration when

faced with a large annotation task. Document annotation is atedious process and

it is difficult for an annotator to completely avoid making errors.

There are some annotations that will not fall within the annotation guidelines

and on which humans may disagree. One approach to this problem is to mark

these annotations as optional or unsure. This is the approach taken in the MUC

named entity recognition annotation scheme. This results in many spurious an-

notations as it allows the annotator to opt out of making a decision and annotate

fragments that have only a tenuous connection to a field as described in the anno-

tation guidelines.

Another approach is to have several annotators with overlapping sets of docu-
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ments to annotate. If each document is annotated independently by two people we

can assign extra annotators to documents where there was disagreement between

the original two annotators. The level of agreement betweenannotators can serve

as a useful measure of how well defined the annotation task is.If inter-annotated

agreement is below a certain threshold, then the task may need to be reviewed and

better defined.

3.2 Information Extraction Datasets

There are several benchmark datasets that are commonly usedfor Information

Extraction. Each of these corpora were annotated by different independent re-

searchers for evaluating their own particular system. In addition to these datasets,

the Pascal Challenge dataset is a new dataset for IE evaluation. We describe the

Pascal Challenge in a separate chapter (chapter 8) as it useddifferent methodology

and compared different systems.

We evaluate our system using these standard benchmark datasets: the Seminar

Announcements (SA) dataset [19], the Job Postings (Jobs) dataset [8] and the

Reuters Corporate Acquisitions (Reuters) dataset [18].

3.2.1 Seminar Announcements

The Seminar Announcements dataset consists of a set of 486 emails announcing

seminars collected at Carnegie Mellon University. It is annotated for 4 fields:

speaker, start-time (stime), end-time (etime) and location. Thestime, etimeand

locationfields may each occur several times in the Seminar Announcement and

in different forms but they all refer to a single entity for the particular Seminar

Announcement. i.e. a seminar can only have onestime, but this may occur several

times in the document in different forms. e.g. ‘2:30’, ‘230pm’. The speaker

field can have multiple values as there can be more than onespeakerat a seminar.

However this information is external and is not encoded in the annotation. In fact

it cannot be encoded in the current annotation scheme (see Figure 3.1).

Figure 3.2 shows an example Seminar Announcement. In this example all four

fields are annotated. There are multiplespeakers for the seminar. This particu-
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Figure 3.2: An example Seminar Announcement

Field occurrences Examples

speaker 759 Professor Sara Kiesler, Woody Vaskula, Vaskula
stime 984 12:00 PM, noon, 5pm
etime 435 1:30 PM, 1:30 p.m, 5pm

location 645 room 207, Student Activities Center, Baker Hall 355

Figure 3.3: Details of the Seminar Announcement dataset

lar example has very little structure but some of the other documents are more

structured. The Seminar Announcements are all free text written as email and

are thus generally unstructured but in some cases the authorhas composed the

email in some structured form. This structure is dependent on the author and is

not consistent across documents.

Figure 3.3 show details of field occurrences and examples from the Seminar

Announcement dataset. Thespeakeris the name of the person giving the seminar.

The location is where the seminar will take place. Thestimefield andetimeare

the time the seminar will start and end respectively. Thespeakerfield is a multi-

valued field while the others are single-valued. The most common field isstime

while etime is the least common. Even so, it still occurs 435 across the dataset.
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Figure 3.4: An example Job Posting

Most documents in the dataset have multiple occurrences ofspeaker, stimeand

location. Many documents contain all four fields.

We used the original version of the Seminar Announcement corpus. This cor-

pus contains a large number of errors and inconsistencies. There is now a cleaned-

up version of the corpus with many of the errors corrected. Weuse the original

version for comparison with other systems that used that corpus. It is also debat-

able whether it is desirable to clean up the corpus. Real annotators make mistakes

and by removing this noise from the annotation data we may be encouraging the

learner to over-fit the corpus. If we remove all the errors from the data it could

become artificial and may be less use for evaluating systems for real-world use.

3.2.2 Job Postings

The Job Postings dataset consists of 300 newsgroup messagesdetailing jobs avail-

able in the Austin area. Figure 3.4 shows an example Job Posting. This data is

semi-structured. The first part of the message was created bythe mailing program

so it is strictly formatted. However the rest of the message was created by a hu-
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Field Occurrences Examples

id 299 NEWTNews.872347949.11738.consults@ws-n

title 466 ALC Application Programmer, Visual Basic Developers

company 291 Alliance, CPS, Charter Professional Services Inc

salary 143 $50k to $70k, to $60k

recruiter 325 Resource Spectrum

state 462 TX, Texas, Miami, Georgia, MI

city 639 Austin, Battle Creek, San Antonio

country 363 US, USA, England, UK

language 867 RPG, COBOL, CICS, Java, c, c++, SQL, PowerBuilder

platform 705 AS400, Windows 95, windows, portable systems, PC

application 605 DB2, Oracle, DB2 server, sysbase

area 980 failure analysis, multimedia, TCP/IP, internet

required years experience 173 2, 2+, Two, 5, 4

desired years experience 45 5, 4, 10

required degree 80 BS, B.S., Bachelor, Bachelor’s, BSCS

desired degree 21 Phd, BS, BSCS, Masters, MSCS

post date 288 30 Aug 1997, 11 Sep 1997

Figure 3.5: Details of the Job Postings dataset

man. It is this free text that contains all the interesting information. The author

has employed some formatting such as separating sections with newlines but in

general there is not much structure to the message. What structure is available

varies from message to message and is not consistent across documents.

The Job Postings dataset has been annotated1 for 17 fields. Figure 3.5 lists

the fields in the dataset along with the number of occurrencesof each field and

examples of each field. Theid field is a header that is attached to each message.

The title is the job title for the particular job being advertised. Thecompanyand

recruiter fields refer to the company that has the job available and the recruitment

agency that is posting the ad. Thestate, city andcountryfields refer to where the

job is based. Thesalaryfield refers to the salary offered and can include words as

well e.g. ‘to $60k’. Theapplicationfield refers to various computer applications

that the job requires while thelanguagefield refers to computer programming lan-

1We use a version of the corpus that is annotated using the standard start-send annotation
approach rather than the corpus’ original template-style annotations.
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Figure 3.6: An example Reuters Corporate Acquisition article

guages that are required. Theareaandplatformfields are less well defined. The

areafield refers to more general categorizations of the job type e.g. multimedia.

Theplatformfield refers to operating systems and general system types. Both of

these fields are poorly defined. The fillers that match these fields vary and are

inconsistent: fillers are marked asarea or platform in some documents but not

in others. Therequired years experienceanddesired years experiencefields are

very similar and can be difficult to distinguish. Similarlyrequired degreeandde-

sired degreeare often similar and difficult to distinguish. Sometimes the desired

degreeis a higher degree than the required one, but IE systems have no concept of

the relationship between various degree qualifications. The post dateis the date

that the message was posted and the format is always the same.In this dataset

language, platform, application, andarea are multi-valued fields while the rest

are single-valued. When they occur in a document there are often several of them

i.e. if the document contains thelanguagefield, several differentlanguages are

usually specified. Some fields are much more common in this dataset than others.

Thedesired degreeanddesired years experiencefields occur only 45 and 21 times

respectively in the dataset. In contrast theareafield occurs 980 times and thelan-

guagefield 867. When evaluating the performance on this dataset weshould keep

in mind how often each field occurs in the dataset.

3.2.3 Reuters Corporate Acquisitions

The Reuters Corporate Acquisitions dataset consists of 600articles taken from the

Reuters newswire describing acquisitions of companies.

Figure 3.6 shows an example from this dataset. The language in these articles

is not grammatical English. It is generally brief and terse.There is very little
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Field Occurrences Examples

purchaser 624 Sahlen and Associated Inc
purchabr 1263 Sahlen, Sahlen and Associates
purchcode 279 TIRR,
acquired 683 Norcros Plc
acqabr 1450 Norcros
acqcode 214 OEH, NCRO.L
acqbus 264 building, oil and gas interests
acqloc 213 Southern California
seller 267 CSR Ltd

sellerabr 431 CSR
sellercode 136 CSRA.S

status 461 proposed, approved, agreed in principle
dlramt 283 542.2 MLN STG, almost a billion dlrs, not disclosed

Figure 3.7: Details of the Reuters Corporate Acquisitions Dataset

structure in the documents. It is annotated with 13 fields, although not all these

fields are used in experiments reported by other IE systems.

Figure 3.7 shows the fields along with the number of occurrences and ex-

amples of each field. Thepurchaserfield is the full unabbreviated name of the

purchasing company. Thepurchabrfield refers to any abbreviated referencing of

the company’s name, i.e. any time the company is mentioned without using its full

official name. Thepurchcodeis the company’s stock-exchange code. Similarly

acquired, acqabrandacqcodegive this information for the company being ac-

quired andseller, sellerabrandsellercodegive this information for the company

that is selling. This separation of full name and abbreviated name into different

fields is difficult for IE systems to deal with. The fields are closely related, but

there is no information in the annotation schema and representation that indicates

that there is a relationship between the fields.

The acqbusandacqlocfields describe the area of business that the acquired

company is engaged and where it is located. Thestatusfield refers to the current

status of the acquisition anddlramt refers to the amount of the acquisition. All

the fields in this dataset are single-valued fields. The abbreviated fields are much

more common than the other fields, often occurring several times per document
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and in different forms. The code fields are much less common, only occurring in

a fraction of the documents.

3.3 Evaluation of Information Extraction Systems

3.3.1 Basic Evaluation

When evaluating IE algorithms we use precision, recall and f-measure. These are

standard measures that are widely used to evaluate information retrieval systems.

Precision is defined as

precision =
TP

TP + FP

TP refers to true positives which are fragments that were extracted that should

have been extracted. FP is false positives and refers to fragments that were ex-

tracted that should not have been extracted. Precision indicates the percentage of

all the fragments that we extracted that were correct. Recall is defined as

recall =
TP

TP + FN

FN refers to false negatives which are fragments that shouldhave been extracted

but were not. Recall indicates the percentage of all fragments that should have

been extracted that were actually extracted. F-measure is the harmonic mean of

precision and recall and is defined as

f1 =
2.precision.recall

precision + recall

In IE systems there is a trade-off between precision and recall. Increasing one

usually decreases the other. If we had a system that extracted a single fragment

and extracted it correctly, we would have perfect precisionbut recall would be low

as we would have missed all the other fragments that we shouldhave extracted.

If we had a system that extracted every possible fragment it would have perfect

recall but low precision because we would have extracted many fragments that we

shouldn’t have.
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3.3.2 Evaluation Method

A truly comprehensive comparison would compare each algorithm on the same

dataset, using the same splits, and the exact same scoring system. Unfortunately,

a conclusive comparison of the different IE systems is impossible using the cur-

rent published results. The other systems are evaluated using slightly different

methodologies [31].

There are several orthogonal issues regarding evaluation.The first is whether

to give credit for partial matches (where an extracted fragment is correct at one

end, but the other end is the wrong token). We take the more conservative ap-

proach of using exact matching only. Thus if thespeakeris ‘Dr J. Lee’ and we

extract only ‘J. Lee’, this would count as both a false positive and a false negative.

Thus our evaluations are conservative with respect to counting true positives: we

must identify both the start and end exactly.

The second issue is how to count correct extractions and errors. The most

conservative approach is to require the system to extract all occurrences of a field

(all slot occurrences: ASO) to get full credit. Thus if a document contained a

target field which had two occurrences, ‘2pm’ and ‘2:00’, then the system would

be required to extract both.

An alternative is a “template” approach (one-slot-occurrence: OSO). In this

case it is sufficient to extract either ‘2pm’ or ‘2:00’ as theyrefer to the same

entity. It is assumed that there is one correct answer per slot, and the extraction

algorithm’s most confident prediction is used as its prediction. OSO evaluation

makes sense for fields where we know that they refer to a singlevalue (e.g. the

time that a seminar starts).

All the systems we compare to use some form of the template filling (OSO)

results although they don’t specify exactly how they measure performance. BWI

for example, assumes one filler per slot and discards all but the most confident

predictions.

3.3.3 Methods of Counting Extractions: Discussion

In this section we discuss how to correctly count extractions given a rich enough

representation. Unfortunately this correct method is not possible using current
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standard representation. Thus we also discuss the practicalities of the available

methods of counting extractions.

The annotation methods used in the standard datasets does not allow us to rep-

resent entity information about field occurrences in documents (see figure 3.1).

The field is the general concept that we are trying to extract,e.g. speaker. An

entity is an abstract thing that an extracted text string represents. Different ex-

tracted text strings (fillers) can refer to the same entity. For example, ‘Professor

Sara Kiesler’ and ‘Prof. Kiesler’ both refer to the same entity - a person named

‘Professor Sara Kiesler’. Different fillers can refer to thesame entity or to dif-

ferent entities. Thus a field can be multi-valued or single valued. Single-valued

fields are those where all fillers refer to a single entity. Forexample,stimeis a

single-valued field as a seminar can only have a single start-time. Different fillers

such as 3, 3:00 and 3pm all refer to the same entity. Multi-valued fields are those

that can refer to several different entities. For example, aseminar can have mul-

tiple speakers. A document with fillers ‘Professor Sara Kiesler’, ‘Prof. Kiesler’,

‘Woody Vaskula’ and ‘Vaskula’ refers to two entities.

When evaluating an IE algorithm we wish to count how many correct and

incorrect extractions the system made. The task in IE is to identify the entities

present in documents. Current systems identify fillers rather than entities. It

should be sufficient to identify each entity rather than eachfiller. For example,

if we extract that the start-time of a seminar as 3pm but fail to identify 3:00 as a

start-time it should not matter. For single-valued fields this means that if we iden-

tify one filler per document and that document is correct we should get full credit

for that document. For multiple-valued fields we would need to identify one filler

for each entity in the document. This seems the most sensibleand correct method

for evaluating an IE system but it is not possible to use this method correctly with

the current annotation schemes.

This gives two possibilities for evaluating with the current annotation scheme.

The first scheme assumes that all fields are single-valued. Thus to get full credit

for a document you need to identify one filler for each field in the document. We

will call this OSO (one slot occurrence) evaluation. This assumption is incorrect

for multi-valued fields such asspeaker. When a document has multiplespeaker

entities we can get full credit for identifying only one of them. On the Job Post-
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ings dataset several of the fields can have many different occurrences in a single

document.

The second method of evaluation is to assume that all fields are multiple-

valued and all fillers refer to different entities. Thus to get full credit for a doc-

ument we need to identify all fillers for all fields in the document. We will call

this ASO (all slot occurrence) evaluation. This assumptionis incorrect for single-

valued fields and multi-valued fields where any entity has more than one different

filler.

Neither of these methods are ideal. We cannot correctly evaluate IE systems

because of the limitations of the annotation system used (except in the case where

all fields are single valued). OSO evaluation will overestimate the performance of

a system on multi-value fields while ASO will underestimate its performance on

single-value fields.

Another issue is whether to assign any credit for partial matches. For example,

if the speakerof a seminar ‘Professor Sara Kiesler’ and the system extracts the

filler ‘Sara Kiesler’ it is still a useful piece of information although not exactly

correct. Some other IE systems assign partial credit for partial matches. A more

complex entity annotation scheme might recognize that these two fillers are the

same abstract entity.

3.4 Experimental Setup and Document Corpora

When comparing against other systems we use their publishedresults for com-

parison. These systems usually don’t specify in detail the methods of evaluation

used. There is no consistent evaluation methodology used byother IE systems so

it is difficult to compare directly against other systems. Often different systems

use different evaluation methodology and don’t describe the evaluation method-

ology used in their publication. To fairly compare our system to other IE systems

we use the most conservative evaluation metric when evaluating our own sys-

tem. Various systems used variations of OSO evaluation and some of them give

credit for partial matches. When evaluating our systems, wegive no credit for

partial matches and we use ASO evaluation because it is more conservative than

OSO evaluation. Thus our evaluations are conservative in relation to other IE sys-
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tems published results and are likely understated in relation to competitor systems.

(Note: The Pascal Challenge standardized on ASO evaluationwith no credit for

partial matches). The other systems that we compare againstgenerally use less

conservative methods than us in our published results. (LP)2 gives credit for par-

tial matches and the originally published results use OSO evaluation. The HMM

results of Freitag and McCallum assume there is one correct answer per document

so it is a form of OSO evaluation. BWI also uses OSO evaluation. Lavelli et al.

[26, 31, 30]describe in more detail the evaluation used by other systems.

We used a 50:50 split of the dataset repeated 10 times. Results for BWI,

RAPIER and (LP)2 come from other sources [31], and where possible we use the

same splits for each system.

For the Pascal Challenge dataset the evaluation methodology was different

than for the other IE datasets. The Pascal Challenge evaluation methodology was

precisely defined and consisted of a four-fold cross-validation of the training data

and a held-out test set. For the cross-validation experiment the training data was

divided into four groups. Each group is used for the testing with the other three

groups being used for training. The other experiment involved training on all the

training data and testing on all the test data. Because it used different methodology

and compared different systems, we leave discussion of the Pascal Challenge to a

separate chapter.

3.5 Summary

In this chapter we discussed some of the issues surrounding the annotation of

datasets for IE.

• We described the three standard IE benchmark datasets: the Seminar An-

nouncements, the Job Postings and the Reuters Corporate Acquisitions.

• In the past evaluation of IE systems there has been little standardization of

IE evaluation methodology.

• We described what we believe to be the correct method of evaluating IE sys-

tems. Unfortunately it is not possible given the current standard annotation
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schema.

• We described two methods of evaluation that are practical with current an-

notation schemes: OSO assumes that all occurrences of a fieldrefer to a

single entity and requires the IE algorithm to extract one occurrence of the

field per document. ASO is more conservative and requires theIE algorithm

to extract all occurrences of a field in a document.

• Our evaluation methodology is conservative with respect tothe results pre-

sented by other IE systems. Thus, even though it may they may not be

directly comparable, our results are at worst understated in relation to the

competitors.
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Chapter 4

A Classification Approach to

Information Extraction

4.1 Overview

In chapter 2 we gave an overview of Machine Learning and how itcan be used

for prediction and for Text Classification in particular. Inthis chapter we will

introduce a basic approach to Information Extraction usingMachine Learning.

This basic approach treats IE as a classification task and combines separate models

for identifying the start and end of a fragment with a simple method for deciding

which starts to pair with which ends. We will expand and enhance this system

in the following chapters as well as investigate the variousaspects of the systems

performance.

We are using a Machine Learning approach to IE so our system consists of

two distinct phases: learning and extracting. We take a supervised approach to

learning. In the learning phase our system uses a set of labelled documents to

generate models which we can use for future predictions. Theextraction phase

takes the learned models and applies them to new unlabelled documents using the

learned models to generate extractions.
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Figure 4.1: Information Extraction as classification

4.2 Information Extraction as Classification

In chapter 2 we described the standard approach to Text Classification. IE is a

token classification task rather than a Text Classification task. With IE we are

working with texts but the basic unit that we are seeking to classify are tokens

in the text rather than the entire text. With Text Classification we are seeking to

identify whether an entire text is a member of particular category. With IE the

categories are start and end, and the objects we seek to assign to these categories

are the individual tokens.

With TC we represent entire documents using a binary bag-of-words vector.

With IE we are representing individual tokens. We cannot usethe BOW approach

as used in TC as each token is only a single word. We much encodeadditional

information about the token to enable our learning algorithm to generalize. For

IE we encode several features of the token as well as relational information about

the surrounding tokens.

The features include the specific token, as well as part-of-speech (POS), chunk-

ing, orthographic and gazetteer information. The featuresare described in more

detail in chapter 5 and in appendix C. In addition, we add features to represent

a fixed-width window of tokens on either side of the instance’s token. The learn-

ing algorithm uses these features to create a model that can distinguish between

tokens that are starts of fields, ends of fields or neither.

42



We treat IE as a classification task. Following [20, 12], the approach that we

use is to treat the identification of fragment start and end positions as distinct token

classification tasks. The instances are all tokens in the document. All tokens that

begin a labelled field are positive instances for the start classifier, while all the

other tokens become negative instances for this classifier.Similarly, the positive

examples for the end classifier are the last tokens of each labelled field, and the

other instances are negative examples.

Figure 4.1 gives an example of what we mean by IE as classification. There

are two classifiers - one to identify starts of fragments and another to identify ends

of fragments. Each token is classified as being a start or non-start and an end or

non-end. When we classify a token as a start, and also classify one of the closely

following tokens as an end we extract the fragment between these two tokens.

The system consists of two different phases - learning and extracting. In the

learning phase, the system uses annotated documents to learn to identify starts and

ends of the field we wish to extract. Each token in the documentis represented by

a single instance. Each instance has a set of features that describe the given token.

In the example given in Figure 4.1 the token ‘Bill’ is positive example for the

start-of-field model and all the other tokens are negative examples. The token

‘Wescott’ is a positive example for the end-of-field model and all other tokens are

examples of tokens that are not the end of a field. The system uses these two sets

of examples to learn two different models - one that can recognize the start of a

field and one that can recognize the end of a field.

One we have learned these models from our training data, we can use the

learned models to extract fillers from new documents. In the extraction phase

we apply the two learned models to each token in the document.We mark each

token as being start/not-start and end/not-end. Thus each token can be a start, end,

neither or both. After this phase we match up starts and ends that were predicted

by our model. In the example shown we have predicted one end and two starts.

We must decide which (if any) of the starts to match with the end to form an

extracted fragment.

The extraction of fillers follows the token classification phase. We use a sim-

ple histogram model. In the example above there are two possible extracted fillers:

‘James Morgan’ and ‘Professor James Morgan’. We can extractboth fillers or we
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can extract the fragment that has the highest confidence. We estimate confidence

asCs ∗ Ce ∗ P (|e − s|). Cs is the confidence for the start prediction.Ce is the

confidence for the end prediction. We estimate the confidencein the start and

end predictions for an instance as the distance of that instance from the hyper-

plane relative to the maximum distance seen in the training data. P (|e − s|) is

the probability of a fragment of that length which we get fromthe tag-matcher

histogram.

To summarize, this IE classification approach simply learnsto detect the start

and end of fragments to be extracted. It treats IE as a standard classification task,

augmented with a simple mechanism to attach predicted startand end tags. During

the training phase we record the length of each field occurrence. From this length

histogram we calculate the probability of a filler of that length occurring. We

use this probability to decide whether or not to extract potential fillers. When we

identify starts and ends in close proximity to each other with the end following the

start, the probability of extracting the filler is estimatedfrom the length histogram.

Our experiments demonstrate that this approach generally has high precision but

low recall. We will refer to this simple IE as classification approach as ELIEL1 (or

L1).

Fig 4.2 summarizes the learning process. The set of trainingexamples are

converted to a set of instances for the start and end tags as described above. We

will describe the instance representation in more detail inthe next chapter. Each

token in each training document becomes a single instance, and is either a positive

or negative example of a start or end tag. Each of these instances is encoded ac-

cording to several features for the particular token in question and the tokens sur-

rounding it. Then the attributes are filtered according to Information Gain (This

process is described in chapter 5). These instances are passed to a learning algo-

rithm which uses them to learn a model. At the end of the L1 training phase we

have models for start and end tags and a length histogram for the start-end pairs.

The start-end pairs are passed to the tag-matcher which is charged with match-

ing start and end tags. Our experiments involve a tag-matcher which generates a

histogram based on the number of tokens between each start and end tag in the

training data. When matching predictions, the probabilityof a start-tag being

paired with an end-tag is estimated as the proportion with which a field of that
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Figure 4.2: L1 Learning

Figure 4.3: L1 Extracting

length occurred in the training data. This approach performs adequately and we

don’t focus on the tag-matching further.

Once we have learned the models from the training data, we canapply them to

new documents in order to extract fragments from them. Figure 4.3 summarizes

the extraction process. The documents we wish to extract from are converted into

a set of test instances that have the same representation as the training instances.

45



Figure 4.4: L1 Precision for the Seminar Announcements dataset

We then apply the models for start and end to these instances.This gives us a

set of predictions for a set of starts and ends for the field that we want to extract.

These predictions are passed to the tag-matcher. The tag-matcher uses the proba-

bility information from the training phase to decide which starts to match to which

ends. Matching the predicted starts to predicted ends results in a set of extracted

fragments for the field we wish to extract.

4.3 Evaluation

We evaluate this simple learner using the methodology described in chapter 3. We

evaluated it on the three standard datasets and compared it to the other systems

described in chapter 2. There are several parameters that can be varied for this IE

system. We examine the effect of varying some of these parameters in the next

chapter. For the experiments presented here we use a defaultset of parameters.

Figure 4.6 shows the performance of this basic IE as classification approach

on the seminar announcements dataset. The results are presented in three graphs
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Figure 4.5: L1 Recall for the Seminar Announcements dataset

Figure 4.6: L1 F-measure for the Seminar Announcements dataset
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Figure 4.7: L1 Precision for the Job Postings dataset

showing precision, recall and f-measure (Note: for HMM we only have f-measure

results). On this dataset, the L1 approach generally outperforms the other IE

systems.

Our approach has the highest precision of all five IE systems on three of the

four fields (speaker, location, etime) second best precision on the other field.

ELIEL1 has the best recall on two of the fields (speakerand location) while it

has the worst recall on theetimefield. When we consider f-measure, our sys-

tem has the highest f-measure on thespeakerandlocationfields while it has the

worst f-measure on theetimefield. Thespeakerandlocationfields are generally

regarded as the more difficult fields in this dataset while thestimeandetimeare

regarded as being easier and more structured.

Figure 4.7 shows performance of ELIEL1 on the Job Postings dataset compared

to Rapier, (LP)2 and SNoW-IE. Again we show precision, recall and f-measure.

In total there are 17 fields in this dataset. When we consider precision, ELIEL1

performs best of all on nine of the 17 fields. It has the worst precision for 4 of the

17 fields. When we look at recall, ELIEL1 performs best on only one of the fields

and is the worst performing system on 2 of the fields.
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Figure 4.8: L1 Recall for the Job Postings dataset

Figure 4.9: L1 F-measure for the Job Postings dataset
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Figure 4.10: L1 Precision for the Reuters Corporate Acquisitions dataset

For f-measure, ELIEL1 is best for 5 of the fields and it is the worst performing

system for 2 of the fields.

We conclude that the approach is competitive with the other systems on this

dataset. For most fields it is one of the better performing systems and it is rarely

the worst performing system.

Figures 4.10, 4.11 and 4.12 shows the performance of ELIEL1 on the Reuters

Corporate Acquisitions dataset compared to Rapier and HMM (f-measure only).

ELIEL1 has higher precision than RAPIER on every single field. It generally has

poorer recall than Rapier, beating it on only 2 fields. HMM hasthe best f-measure

on each of the fields that we have results for.

We conclude that ELIEL1 is competitive with Rapier on this dataset. It has

higher precision on all the fields. Its f-measure is sometimes better and sometimes

worse than Rapier. HMM performs best on this dataset.
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Figure 4.11: L1 Recall for the Reuters Corporate Acquisitions dataset

Figure 4.12: L1 F-measure for the Reuters Corporate Acquisitions dataset
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Figure 4.13: L1 Precision summary

Figure 4.14: L1 Recall summary
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Figure 4.15: L1 F-measure summary

4.4 Discussion

Figure 4.13, Figure 4.14 and Figure 4.15 summarize the performance of ELIEL1

against that of other IE systems. The horizontal axis shows the performance of

ELIEL1 while the vertical axis shows the performance of the competitor system.

Each point represents the performance of ELIEL1 vs a competitor on a single field.

Points that occur above the diagonal line indicate that the competitor system is

doing better while points occurring below the diagonal lineindicate that ELIEL1

is doing better. On the precision graph, most of the points are below the diagonal.

For recall, the majority of points are below the diagonal or clustered close to it.

For f-measure, most of the points are below the diagonal. Those that are above it

are generally close to it.

We conclude that the approach described is competitive withthe other IE sys-

tems. In fact on many fields, this simple approach outperforms the state-of-the art

competitor IE systems.

In the following chapters we investigate variations of the 1-level classification

approach and techniques for augmenting it. We investigate which aspects of the
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algorithm contribute to its performance. In chapter 5 we discuss the feature rep-

resentation used in more detail and investigate how much thefeatures contribute

to performance. We also investigate the overall effect on performance of attribute

filtering and the choice of learning algorithm. In chapter 6 we discuss the effect

of dataset imbalance and instance filtering on the performance of the system.

Then in chapter 7 we extend ELIEL1 ’s one-level classification approach and

introduce a two-level classification approach that substantially improves perfor-

mance.

4.5 Summary

In this chapter we described a simple 1-level classificationapproach to IE (ELIEL1).

This approach represents IE as a token classification task bycombining separate

SVM classifiers for identifying starts and ends of fields and matches up starts and

ends using a simple histogram model.

We evaluated this approach using three standard IE datasets, compared it to

several other state-of-the art IE algorithms and showed that it is competitive with

other state-of-the-art IE systems. This approach was the best performing system

on the SA dataset, it was competitive with the other IE algorithms on the Job

Postings dataset and was competitive with Rapier while being outperformed by

HMM on the Reuters dataset. It gave high precision compared with other systems

whereas recall was not as competitive.
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Chapter 5

Features, Attributes and Learning

Algorithms

In order to apply Machine Learning techniques to any classification task we must

supply a set of examples for the training algorithm. The learning algorithm then

uses these examples as a basis for building a model with whichfuture predictions

can be made. Each example instance is described by a set of features that describe

various properties of the instance. We use a vector space model for our features.

The features are not defined in advance but depend on the tokens that occur in the

documents.

In the case of IE each of these examples is a token. Each token is an example

of a start, end or neither. Since each example is just a singletoken, the learning

process requires that a set of features be identified and associated with each to-

ken. These features are used to represent the token and are used by the learning

algorithm to differentiate between tokens.

Each instance is characterized by a set of attributes. Each attribute measures

a different aspect of the particular instance. In the example of Machine Learning

that we gave in Figure 2.1 the attributes were pre-defined andfixed in advance.

However when dealing with text, it is not possible to fix the attributes in advance as

the attributes depend on the tokens that occur in the text. The choice of features to

be used as attributes can affect the quality of the model generated by the learning

algorithm. It is important to identify the salient features. We want to identify
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features that generalize well and are not too specific as these features will be

useful in classifying instances that are different to thoseseen in the training data.

5.1 Features and Encoding

In chapter 2 we discussed the representation of text for Machine Learning. Our

approach to representing text documents for IE is similar but adapted for the IE

task.

Documents are broken into tokens. Each token is a single instance. Each

instance can be a positive or negative example for the start or end of the field we

are trying to extract. A token is defined as any continuous sequence of alphabetic

or numeric characters. Punctuation symbols are treated as separate tokens. Each

instance has several kinds of features associated with it. These feature-types are:

Token The actual token.

POS The part-of-speech of the token. Each token is tagged with its corresponding

POS using Brill’s POS tagger [6]. We also represent chunkinginformation

about the tokens. The POS tags are also grouped into noun-phrases and

verb-phrases (Chunk).

GAZ The values associated with the token in a gazetteer. The gazetteer is a

user-defined dictionary. It contains lists of first-names and last-names taken

from the U.S. census bureau, a list of countries and cities, time identifiers

(am, pm), titles (Jr., Mr), and a list of location identifiersused by the U.S.

postal service (street, boulevard). Pre-defined sequencesof features that

match pre-defined entities are also marked as entities (ERC). The entities

recognized are ‘person’ and ‘time’. For example the sequence of gazetteer

features ‘firstname’ followed by ‘lastname’ would additionally be marked

as ‘person’.

Orthographic These features give various orthographic information about the

token. Examples of these features include whether the tokenis upper-case,

lower-case, capitalized, alphabetic, numeric or punctuation.
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Pair In addition to representing all the above features separately, we also add

features are all possible pairs of the POS, GAZ and orthographic features.

For example, a token that is a name and is capitalized could berepresented

by a single feature.

All features are binary. Every instance is represented as a vector of all the fea-

tures. Each feature can have value 1, indicating the presence of the feature in that

instance, or 0 indication the absence of the feature in that instance.

There are two kinds of features that are abstractions of the basic feature types

listed above. Chunk features are an abstraction of the POS features. ERC features

are a higher level abstraction of the GAZ features. The idea behind the Chunk

and ERC features is to reduce the burden on the learning algorithm, by encoding

some potentially useful information. For example, the learner should be capable

of learning that a name is often a first-name followed by a last-name, but if we

add a feature to encode this information it should allow the learner to focus on

whether the name should be extracted or not.

To represent an instance, we encode all these features for that particular token.

In addition, for a fixed window size of w, we add the same features for the previous

w tokens and the next w tokens. For example, the string

Place: WeH 4601

Speaker: Alex Pentland

would be tokenized and tagged as

Token POSChunk Gaz ERC Orthographic

place NNP alpha, cap

: punct

weh NNP alpha, cap

4601 num

\n

speakerNNP alpha, cap

: punct

alex NNP NPs firstnameperson alpha, cap

pentlandNNP NPe lastnameperson alpha, cap
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If we encode the instance centered at the tokenalex, using a window of size

1 to encode relational information about the next and previous tokens, we would

get the following features:

Tok_alex_0, Tok_:-1, Tok_pentland_+1,

POS_NNP_0, POS_NNP_+1,

C_NP_s_0, C_NP_e_+1,

E_person_0, E_person_+1,

O_aplha_0, O_cap_0 , O_punct_-1,

O_aplha_+1, O_cap_+1

All tokens in the dataset become a single instance and are encoded in this way.

Each instance is represented as a binary vector of all the attributes that occur in

the training set. Each instance is encoded using this vectorwith the presence or

absence of a particular feature being represented by a 1 or 0 at the vector position

that represents that feature. There are a large number of attributes and the vectors

are very sparse. For example training on 50% of the Seminar Announcements

dataset gives approximately 74K attributes. Training on 50% of the Job Postings

dataset gives approximately 43K attributes, training on 50% of the Acquisitions

dataset gives approximately 48K attributes while a train-split of the Pascal CFP

training corpus gives approximately 170K attributes.

Because of the large number of attributes we filter the attributes according

to Information Gain (see section 5.2). It is also possible tofilter the negative

instances at this point in order to reduce learning time and alter the prior proba-

bilities of the learner (see chapter 6).

In addition to the features described we create new featuresusing pairs of fea-

tures. The combination of several features could be much stronger evidence of

the class of an instance than the presence of the features individually. While the

learning algorithm should give higher weight to instances with multiple informa-

tive features, adding pair features may help the learning algorithm to recognize

these. For example, if an instance is afirstnameand the next token is alastname,

than adding a feature ‘firstnameand nextlastname’may help the learner’s ability

to generalize.
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We create features for all possible pairs of non-token features: i.e. we create a

feature for all possible pairs of the features that occur in the POS, orthographic and

gaz features. We exclude the token features because there are a large number of

token features. Representing all possible feature pairs including the token features

would result in a huge increase in the number of features.

5.2 Attribute Filtering

Our method of representing instances generates a large number of attributes. This

is because we use the tokens as features. Excluding the tokenfeatures gives a

small fixed number of features. For example, using 50% of the Seminar An-

nouncements for learning with a window of 4 gives a representation with over

70,000 attributes. Many of these attributes are rare and occur in only a few in-

stances. Many of them occur too often across both classes to be useful. The vast

majority of features have no discriminative value.

Having such a large feature-set results in large learning times for the learning

algorithm. We filter the majority of the attributes to reducelearning time. We

only wish to use features for learning that are useful for discriminating between

classes.

We filter attributes according to Information Gain [40]. Information Gain es-

timates the amount of extra information that we get from having the attribute

present. It gives us an estimate of how well a particular attribute separates the

training instances according to their correct classification. We only want to use

attributes that give us some new information that we can use to discriminate be-

tween classes.

Entropy measures the amount of disorder in a system. In the case of Machine

Learning, it measures homogeneity of the instances. For a set of instances S for a

binary classification task, we can measure the entropy of S as

Entropy(S) = −p+log2p
+ − p−log2p

−

wherep+ is the proportion of positive instances in S andp− is the proportion

of negative instances in S.
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Figure 5.1: Filtering attributes by Information Gain

Using an attribute that is highly discriminatory for the target class will give a

large reduction in entropy while attributes that have no discriminatory value will

have no effect on the entropy.

The Information Gain of an attribute is defined as the expected reduction in

entropy that occurs when we split the instances according tothat attribute. The

Information Gain of an attribute A, relative to a set of examples S is defined as

Gain(S, A) = Entropy(S) −
∑

v∈V alues(A)

|Sv|

|S|
Entropy(Sv)

Values(A)is the set of all possible values for attributeA. Sv is the subset of

S for which attributeA has valuev. Gain(S,A)gives us the expected reduction in

entropy caused by knowing the value of attributeA.

Figure 5.1 shows the performance on the Seminar Announcements dataset

with various levels of attribute filtering. The vertical axis shows f-measure while

the horizontal axis shows the number of attributes used for learning. For each
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of the four fields, there is no benefit in using more than 5000 attributes. This

indicates that most of the attributes that are generated arenot useful for learning.

In fact the system doesn’t require a large number of attributes to perform well. For

thestimeandetimefields, the performance with 1000 attributes is not significantly

worse than with 5000 attributes. For the other two fields,speakerandlocation, the

performance continues to increase up to 5000 attributes. Ifwe use more than 5000

attributes, the performance does not increase any further.However it does not

decrease either. This indicates that the extra attributes do not improve our ability

to learn but neither do they harm it, e.g. by introducing noise. This indicates

that filtering itself does not improve accuracy. If it did, wewould expect to see it

drop as less attributes are filtered. The only thing the extraattributes contribute

is extra learning time. From this we conclude that only a small portion of all the

attributes are necessary for learning. Removing most of them will improve the

execution time of the algorithm but will not affect the accuracy. We conclude that

it is sufficient to use the top 5000 attributes as ranked by Information Gain for

learning our models.

We rank all attributes according to Information Gain and pick the topn at-

tributes for representation. In experiments we setn to 5000. This is ELIE’s default

value for all experiments.

5.3 Features-sets and Performance

Figure 5.2 show the performance of the various kinds of features on the Seminar

Announcements dataset. The vertical axis gives f-measure while the horizontal

axis shows the various fields. We show the performance for thesystem using only

token features (Tok), token features with either POS (Tok + POS), orthographic

(Tok + Orth) or gazetteer features(Tok + Gaz), all features except the pair features

(All - Pair), all features except token features (All-Tok) and all features (All).

Adding the pair features gives no improvement in performance. On thestime

andetimefields the performance using only the token features is just as good as

performance with any of the more general features added. This indicates that these

fields are specific and limited in the tokens that occur in themand that there is little

scope for improvement using generalization with the more specific features. For
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Figure 5.2: The effect of various feature-sets on performance

the locationandspeakerfields there is an improvement in performance when the

other features are used. This indicates that these fields have more different values

and generalization using features such as the gazetteer andorthographic features

helps with performance.

For the location field adding the orthographic features improves the perfor-

mance over using the token features alone. For thespeakerfield, there is a large

performance improvement using the extra features over using the token features.

This is because there is large variability in thespeakers in the dataset whereas

stimeandetimeand to a lesser degreelocation have a more limited number of

different values. Thus for thespeakerfield the ability to generalize with features

such as whether the token is capitalized or whether it is a proper noun are impor-

tant for performance. Both the orthographic and the POS feature offer significant

improvement over using the token features alone for the speaker field.

Using the gazetteer features offers a large improvement while using all these

features further improves performance. Using all featuresexcept for token feature

gives good performance. It’s performance is a good as using token features for
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three of the four fields and substantially better for the speaker field. These two

feature-sets both give good performance and use different features. These two

feature-sets offer two redundant views of the data and they may be suitable for an

active learning approach using co-training [5] and multiple redundant views [36].

There is little benefit in adding pair features so ELIE’s default feature-set is

(All-Pair).

5.4 Learning Algorithms

The design of our system is modular. It uses the Weka Machine Learning library

[46] for learning the models. We used the SMO algorithm as ourlearning al-

gorithm for most of the experiments. We can however use any ofthe Machine

Learning algorithms that are implemented in Weka in its place. In this section

we investigate some of the other learning algorithms available. Other systems use

different learning algorithms - often some form of inductive rule learning. The

choice of learning algorithm can have a considerable effecton the performance

of an IE system. Other approaches usually compare their systems as a whole and

don’t consider the effects of the various parts of the system. For example, would

(LP)2 perform significantly better if it had a stronger learning algorithm?

Figure 5.3 shows the performance of our one-level classification approach with

several different learning algorithms on the Seminar Announcements dataset. The

vertical axis shows f-measure. Naive Bayes performs very poorly on this task,

being significantly worse than the other algorithms (apart from OneR) on every

field. Winnow also performs poorly. It is significantly worsethan SMO and Rip-

per on three of the 4 fields. Ripper performs poorly on the etime field. On the

location field it is better than Winnow and Naive Bayes but significantly worse

than SMO. On thespeakerandstimefields it is competitive with SMO, almost

exactly matching it. ID3 is the second best algorithm on 3 of the 4 fields, outper-

forming Ripper on three of the four fields. SMO is the best performing algorithm.

It performs best on all four fields, with only Ripper able to match it on two of the

fields. OneR generally does badly, but does surprisingly well on thestimefield1.

1In this case OneR generated the following rules for start andend: TOKEN_time_-2 -> start
and G_ampm_0 -> end. This means that a token is tagged as startof anstimeif the token time
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Figure 5.3: Performance of different learning algorithms

This indicates that there is a wide variation in performancedepending on

which learning algorithm is used. It also indicates that this is a complex task.

Naive Bayes often performs very well on text classification tasks but on this task

its performance is very poor. The different between the bestand worst performing

algorithm on each field is large. We conclude that SMO is a goodchoice of learn-

ing algorithm for this task and the choice of learning algorithm can play a large

part in the performance of the system. The performance of Ripper indicates that

an inductive rule learner can do well on this task.

In summary SMO is the best learning algorithm, Ripper and ID3perform rea-

sonably well on this task, while OneR, Winnow and Naive Bayeshave poor per-

formance. SMO is ELIE’s default learning algorithm.

occurs two tokens back and a token is tagged as an end ofstimeif the gazetteer marks it as type
‘ampm’.
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5.5 Summary

In this chapter we investigated some of the various aspects of our IE system that

contribute to its performance. Rather than having a monolithic IE system to com-

pare to others, it is important to understand which parts of the IE system contribute

to performance. Each different IE system has various caveats that give it an ad-

vantage over other systems. But they are usually compared intheir entirety. If

we separate IE systems into their components and understandwhich components

improve performance we could build an IE system that incorporated the best com-

ponents of each individual IE system.

We conclude that:

• Token features alone give good performance.

• Other more general features also give good performance and adding them

with the token features gives a performance boost.

• The token features and other features form two redundant views of the data

which might be suitable for an active learning approach to IE.

• Filtering a large number of attributes doesn’t affect performance as long as

the number of attributes remains above a certain minimum threshold.

• The choice of learning algorithm is important. Some learning algorithms

exhibit poor performance on this task. SMO is a good choice for learning

algorithm.
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Chapter 6

Instance Filtering

6.1 Imbalanced Data

Imbalanced datasets are those where the number of examples of one class far out-

numbers the number of examples of another class, i.e. the number of negative

instances is far greater than the number of positive instances or vice versa. When

there are a small number of positive examples it becomes moredifficult to learn to

identify the positive instances. In many cases however it isthe positive instances

that are of interest so it is important to identify them. Suppose we wish to auto-

matically identify credit-card fraud and for every fraudulent transaction there are

999 normal transactions. A simple classifier that always predicts that a transaction

is OK would be correct 99.9% of the time but it would never identify a fraudulent

transaction. Such a system would also have high precision, recall and f-measure.

Even though its accuracy is very high1, it completely fails in its assigned task.

SVMs are one of the best performing learning algorithms on many learn-

ing tasks. However their performance drops when used on imbalanced data [3].

Learning with imbalanced data is a problem for all learning algorithms. SVMs

perform well on moderately imbalanced data and are not as badly affected by data

imbalance as other algorithms. This is because SVM learns from instances that

are close to the boundary between classes, i.e. the support vectors. It is not af-

fected by negative instances far from the boundary even if there are many of them.

1Assuming accuracy is calculated with respect to both the positive and negative classes.
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However, as imbalance increases SVMs performance will suffer.

There are two main approaches to dealing with imbalance in SVMs. The

first is apply weighting to the positive examples so that the learning algorithm

pays more attention to them and to penalize it more for misclassifying positive

examples than negative examples. For SVMs this can be accomplished by using

penalty constants for the different classes of data such that errors on the positive

instances are more costly than errors on the negative instances.

The second approach is to pre-process the dataset to make it more balanced,

either by undersampling the negative examples or oversampling the positive ex-

amples. The aim in each case it to make the dataset more balanced. This can be

done by removing some of the negative instances (undersampling) or by adding

some more positive instances (oversampling). SMOTE [9] performs oversam-

pling by adding new synthetic positive instances. It does this by assuming the

regions surrounding positive instances in the instance space and between posi-

tive instances are positive and adding positive instances into these areas. It is not

clear if undersampling is suitable for SVMs. Removing instances far from the hy-

perplane should have no effect while removing instances close to the hyperplane

could adversely affect performance.

Akbaniet al. [3] discuss these approaches to dealing with data imbalanceand

combine the two methods. They describe the causes of performance loss with

imbalanced data as being:

1. Positive points lying further from the ideal boundary. With imbalanced data,

SVMs tend to learn a boundary that is too close and skewed towards the

positive instances (see figure 6.1). Because there are many more negative

instances than positive instances, the unpopulated area ofthe instance space

between the positive and negative instances is more likely to contain positive

instances than negative instances. If it contained negative instances we are

likely to have already seen them. However the SVM places the hyperplane

between the positives and negatives so as to maximize marginand minimize

error. Thus it is likely that the boundary is too close to the positive instances.

2. Weakness of soft margins. The margin is the distance between the hyper-

plane and the instances. SVM places the hyperplane so that itis as far as
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Figure 6.1: SVM and imbalanced data

possible from both the positive and negative instances. Soft margins allow

a hyperplane that doesn’t separate all the instances, but separates most of

them. There is a trade-off between maximizing the margin andminimizing

the error. With highly imbalanced data, maximizing the margin would lead

us to classify everything as negative. This explains why SVMs fail when

the data imbalance becomes very large.

3. Imbalanced support vector ratio. Since the ratio of positive to negative sup-

port vectors is imbalanced, the neighbourhood of an instance close to the

hyperplane is likely to be dominated by negative support vectors. This

means the SVM is more likely to classify an instance that is close to the

boundary as negative.

Their experiments show that undersampling improves the distance of the learned

hyperplane but the orientation suffers. They claim that undersampling will move

the learned boundary closer to the ideal boundary, but may adversely alter the

angle of the hyperplane. Despite this claim, their experiments show that under-

sampling performs better than oversampling with SMOTE and biasing the learner
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towards the positive examples. The only approach that performed better than un-

dersampling was their algorithm that combined oversampling and biasing.

Another reason to remove instances is to reduce learning time. Since the SVM

only uses instances that are part of the support vectors for learning we can elim-

inate some of the instances without affecting the accuracy of the classifier. The

learning time for a classifier is dependent on the number of attributes and the num-

ber of instances. Since we filter the attributes and keep the number of attributes

constant at 5000, the learning time is directly proportional to the number of in-

stances. There can be a large number of instances but only a small number of

them are useful for learning. So it is useful to filter out the instances that are not

useful for learning.

6.2 Data Imbalance in IE Datasets

Representing IE as a classification task gives rise to learning tasks with a high

degree of imbalance. This gives rise to the behaviour that wesee at level 1 where

we have high precision but low recall. The fact that we have a high number of

negative instances and a small number of positive instanceswhen learning means

that the learner is much more likely to predict negative instances than positive in-

stances. For an instance to be predicted as positive, there must be strong evidence

that it is a positive instance. Thus the imbalanced models are more likely to make

errors that are false-negatives than false-positives.

Data imbalance explains the behaviour that we see at L1 with ELIE. With

L1 learning there is a much larger number of negative instances than positive

instances. Because of the reasons described in the previoussection, the L1 learner

is more likely to predict a negative instance that a positiveinstance. If a positive

instance is predicted it is because the evidence that it was positive was strong.

Instances that are close to the boundary between classes aremore likely to be

classified as negatives. Thus when we make a prediction for a positive instance

it is likely to be correct. Thus we have high precision at L1 but low recall as

many positive instances that are close to the boundary are incorrectly classified as

negative.

The two-level approach described in chapter 7 reduces the imbalance in a tar-

69



geted way and this leads to improved recall while sacrificingsome precision.

However we can apply instance filtering techniques to the 1-level IE system

(ELIEL1). Removing instances can improve execution speed because we have

less data to learn from. It can also improve performance by reducing the data

imbalance and decreasing the likelihood of producing falsenegatives.

The datasets that we use for experiments exhibit a large degree of imbalance.

The Reuters Corporate Acquisitions dataset has an imbalance of approximately

100:1, the Seminar Announcements dataset 200:1, the job postings 500:1 and the

Pascal CFP 900:1. It is interesting to note that ELIE ’ S performance in relation to

other IE algorithms is proportional to the level of imbalance in the dataset, i.e. as

the level of imbalance increases ELIE’s ability to outperform other systems falls.

6.3 Instance Filtering Techniques

6.3.1 Random Negative Instance Filtering

The first technique is a simple random negative instance filter. All positive in-

stances are preserved, while a predefined percentage of the negative instances are

randomly removed. The advantage of this method is that is easy to implement

and efficient to execute. There are a lot of instances in the data that are very un-

informative and contribute nothing to the learned model. However there are also

informative negative instances and this method can remove these too. The perfor-

mance of this technique can vary widely over different runs on the same data. If it

doesn’t remove any very informative negative instances then its performance can

be very good. However if it deletes a number of informative negative instances

while keeping uninformative ones it can perform very poorly.

Figure 6.2 shows performance (f-measure) of this approach on the Seminar

Announcements dataset. The vertical axis gives the f-measure while the horizon-

tal axis gives the percentage of negative instances that were randomly removed.

This experiment follows the same methodology as the experiments described in

chapter 4. For each field, performance is slightly higher initially but then begins

to fall as the filtering rate increases and falls rapidly whenthe filter rate is high.

For speaker, stimeandetimethere is no appreciable difference in performance

70



Figure 6.2: Random negative instance filtering: F-measure

with the filtering rate set to 80% than with no filtering. Forlocationperformance

begins to fall once the filtering rate goes above 50%. Forspeakerand location,

performance begins to fall rapidly once the filtering rate goes above 80% while

for stimeandetimethe performance falls rapidly once the filtering rate goes above

90%. This indicates that for this dataset, random negative instance filtering is a

good way to reduce execution time without harming performance. Learning time

is a direct function of the number of instances. We can safelydelete up to 50%

of the negative instances using this technique. Once the filtering rate goes above

50% performance begins to degrade and above 80% performancedegrades signif-

icantly.

Figures 6.6 and 6.7 show precision and recall for random undersampling on

the Seminar Announcements dataset. When we consider precision and recall sep-

arately we see that the drop in performance comes from a fall in precision more

than from a fall in recall. For each of the four fields precision drops sharply as

the rate of undersampling increases. Forstime, etimeandlocationrecall only falls
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Figure 6.3: Random negative instance filtering: Precision

when the rate of undersampling goes above 95%. For thespeakerfield recall ac-

tually rises as the rate of undersampling increases. This confirms that precision is

proportional to the level of imbalance in the dataset. By altering the imbalance in

the dataset we can alter the precision of the extractor whilethe recall of the system

stays relatively constant.

6.3.2 Removing Instances with Uninformative Words

Random filtering can arbitrarily improve accuracy and decrease execution time

without hurting performance. But it is not reliable. We needa more reliable

method. We wish to remove instances based on how useful they are for learning.

We would like to remove uninformative instances and keep informative instances.

One approach to this is to remove instances whose token is uninformative

with respect to the target class. Very frequent words are usually uninformative.

Removing the most frequently occurring words can reduce thedataset size without
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Figure 6.4: Random negative instance filtering: Recall

the risk of removing informative instances. The approach wetake is based on that

taken by Gliozzoet al. [22].

For a corpusC, |C| is the number of tokens inC andVc is the vocabulary of

the corpusC. OCC(w,C)is the number of occurrences ofw in C.

The probability of a word occurring is

p(w) =
OCC(w, C) + 1

|C| + |Vc|

The set of uninformative words is then given by

Uθ = {w|p(w) > θ and w ∈ VC}

The aim is to identify words that are frequently marked as positive examples.

Let OCC+(w, C) andOCC−(w, C) be the occurrence of the wordw in the pos-

itive and negative examples. Then the probability of the word being in a positive
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example is

p+(w) =
OCC+(w, C) + 1

|C| + |Vc|

and the probability of the word being in a negative example is

p−(w) =
OCC−(w, C) + 1

|C| + |Vc|

Thus the set of uninformative words is given by

Uα,θ =

{

w | ln
p−(w)

p+(w)
− Z1−α

√

1

OCC+(w, C)
+

1

OCC−(w, C)
≥ Θ

}

(6.1)

A word is filtered if the odds ratio betweenp+ andp− exceeds some predefined

threshold.Z1−α is a confidence coefficient measured from statistical tables.

From here our approach diverges from that of Gliozzoet al. They perform

further steps. They do an exhaustive search of possible values forα andθ. An

upper boundε is set on the number of positive instances that can be filteredand

α andθ are selected such that they filter the maximum number of negatives while

ensuring that the positive filter rate does not exceedε.

Our approach does not do an exhaustive search for values ofα andθ. Instead

we remove a fixed, pre-defined percentage of the negative instances. We do not

filter any of the positive instances. We fix the value ofα2 and calculateθ for all

terms in the vocabulary according to equation 6.2.

θ = ln
p−(w)

p+(w)
− Z1−α

√

1

OCC+(w, C)
+

1

OCC−(w, C)
(6.2)

We then rank all words according toθ and set a threshold forθ such that it

covers a fixed percentage of the instances and delete all negative instances that

have a value forθ that is below this threshold. E.g. we may set our threshold so

that deleting all instances whose token hasθ less than the threshold would result

in us deleting approximately 50% of the negative training instances.

2We fix α to give 99% confidence
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Figure 6.5: Filtering instances with uninformative words:F-measure

We also calculateθ over all fields that we want to extract, rather than over

one field. A token is counted as occurring in a positive instance for all of the

fields we wish to extract. Thus the instances that are deletedare the same for all

fields. This allows us to keep a single representation of the dataset and we only

have to perform the instance filtering once. It also means that we keep instances

that are informative for one field, but may be uninformative for other fields. If

we were to perform the instance filtering on a per-field basis,we would only keep

instances relevant to the particular field in question but wewould need to perform

the filtering several times. Doing it once is an approximation for simplicity and

efficiency. Thus there is an upper bound on the number of negative instances

that are filtered. If we are extracting more than one field, there will always be

negative instances in the dataset as instances that are positives for one field will

be negatives for other fields.

We performed some experiments on the Seminar Announcementsdataset to

investigate this instance filtering approach. Figure 6.5 shows performance on this

75



Figure 6.6: Filtering instances with uninformative words:Precision

dataset using this filtering technique. The vertical axis shows f-measure while the

horizontal axis shows the percentage of negative instancesfiltered. Performance

is relatively constant as the filtering rate increases. Evenwith high filtering rate

the performance remains high. This indicates that this technique can filter a large

number of negative instances without harming performance.This technique re-

moves instances that are not likely to occur in the positive examples. Thus they

are not likely to be close to the boundary so removing them doesn’t adversely

affect the SVM performance.

F-measure gives the weighted average of precision and recall. Since f-measure

is relatively stable with increased filtering we must investigate if precision and

recall are changing as the filtering rate increases.

Figure 6.6 shows precision for the same experiment. It showsthat precision

falls for all four fields as the filtering rate increases. As the filtering rate goes

above 90% the drop in precision increases significantly. Thelocationandspeaker

fields have a higher fall in precision thanstimeandetime. Speakerand location
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Figure 6.7: Filtering instances with uninformative words:Recall

are the more difficult fields to learn so they probably requiremore instances to

learn well.

Figure 6.7 shows the recall on the Seminar Announcements. Thespeakerfield

shows a large increase in recall as the filtering rate increases. Thelocationand

stimefields show small increases in recall as the filtering rate increases while

etime is fairly constant.

In general precision falls as more instances are filtered andrecall increases.

This increase in recall cancels out the fall in precision andthe f-measure stays

relatively constant. Undersampling pushes the boundary closer to the negative in-

stances and away from the positive instances. This gives an increase in recall as

we are more likely to identify positive instances. It may be the case that under-

sampling also changes the angle of the hyperplane, as described in [3], resulting

in lower precision.
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6.4 Discussion

There are two reasons we wish to remove negative instances. The first is to im-

prove execution time. Execution time is a direct function ofthe number of in-

stances. Many of the negative instances do not contribute toour ability to learn

our target concept. We would like to delete negative instances that are not informa-

tive to reduce the time it takes to learn. For SVMs these uninformative instances

are instances that are not close to the boundary between classes. We examined

two methods for instance filtering. Both methods can remove some of these in-

stances without harming accuracy. Random undersampling isuseful as long as

the filter rate is not too high. The higher the filter rate, the higher the likelihood

of removing informative instances and reducing the accuracy of the learning algo-

rithm. Filtering uninformative instances is effective even at high rates of filtering.

It causes precision to fall slightly, but recall rises and f-measure stays constant

even with very high levels of filtering.

The second reason to remove some of the negative instances isto address the

class imbalance problem. Removing negative instances may move the hyperplane

back towards the negative examples leading to greater recall.

Neither of these instance filtering techniques really address the class imbal-

ance problem. If they did we would see performance rising as more instances

are removed. We do see some small increase in performance when filtering un-

informative instances at very high levels of filtering. To better address the class

imbalance problem would require us to remove all the uninformative instances,

but to also remove some of the negative instances that are close to the hyperplane

without hurting performance.

6.5 Summary

In this chapter we described two approaches to instance filtering. There are two

reasons to perform instance filtering. The first it to reduce execution time without

harming accuracy by removing instances that are not informative for learning.

The second is to address the problem of class imbalance in IE and reduce the

class imbalance to improve accuracy.
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• We described two instance filtering methods and assessed their impact on

the performance of the system.

• An approach that removes random negative instances can reduce execution

time without harming accuracy up to a certain threshold which in our exper-

iments was 50%. With this random approach there is a chance offiltering

informative instances and this increases as the rate of filtering increases.

• We also showed that an approach that removes instances with tokens that

are unlikely to occur in the positive examples can filter a large proportion

of the negative instances without harming accuracy.

• The precision of the extraction system is proportional to the level of im-

balance in the data. High imbalance gives high precision. With random

undersampling precision drops much more than recall as the level of under-

sampling increases.

• Neither approach significantly improved accuracy but both allow us to filter

instances for improved execution time. The approach that filters uninforma-

tive tokens is much more reliable at higher filtering levels.
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Chapter 7

A Two-level classification approach

to Information Extraction

In this chapter we extend the one-level classification approach to IE that we de-

scribed in chapter 4. We showed that the one-level approach is competitive with

other current state of the art IE systems. We extend this approach by adding a

second level of more focused classifiers that use the predictions of the one-level

approach as a guide for their own predictions. This second layer of focused clas-

sifiers allows us to improve the recall while still maintaining good precision. We

will call this approach ELIEL2 (abbreviated to L2).

7.1 A Two-level Approach to Learning

The L1 learner builds its model based on a very large number ofnegative instances

and a small number of positive instances. Therefore the prior probability that an

arbitrary instance is a boundary is very small. This gives a model that has very

high precision. Because the prior probability of predicting a tag is so low, and

because the data is highly imbalanced, when we actual do predict a tag, it is very

likely that the prediction is correct. The L1 model is therefore much more likely

to produce false negatives than false positives (high precision).

The intuition behind the two-level approach is as follows. At L1, the start and

end classifiers have high precision. To make a prediction, both the start classifier
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Figure 7.1: L1 and L2: An example

and the end classifier have to predict the start and end respectively. In many cases

where we fail to extract a fragment, one of these classifiers made a prediction, but

not the other. Level 2 assumes that these predictions are correct and is designed

to identify the starts and ends that we failed to identify at level 1.

The L2 models are learned from training data in which the prior probability

that a given instance is a boundary is much higher than for theL1 learner. This

“focused” training data is constructed as follows. When building the L2 start

model, we take only the instances that occur a fixed distance before an end tag.

Similarly, for the L2 end model, we use only instances that occur a fixed distance

after a start tag.

For example, an L2 window of size 10 means that the L2 start model is built

using only all those groups of 10 instances that occur beforean end-tag in the

training data, while the L2 end model is built using only those instances that occur

in the 10 instances after a start tag in the training data. Note that these L2 instances

are encoded in the same way as for L1; the difference is simplythat the L2 learner

is only allowed to look at a small subset of the available training data.

Fig. 7.1 shows an example of the instances used by L1 and L2 with a looka-

81



head/lookback of 3. In this example the token ‘Bill’ is the start of a field and the

token ‘Wescott’ is the end of a field. When building the L1 classifiers we use all

the available instances. When building the L2 start model weuse the end token

and the 3 tokens preceding it. When building the end model we use the start token

and the three tokens following it. Note that these L2 instances are encoded in the

same way as for L1; the difference is simply that the L2 learner is only allowed to

look at a small subset of the available training data. When extracting, the L2 end

classifier is only applied to the three tokens following the token which L1 tagged

as a start and the token itself. Similarly the L2 start classifier is only applied to

instances tagged as an end by L1 and the three preceding tokens.

This technique for selecting training data means that the L2models are likely

to have much higher recall but lower precision. If we were to blindly apply the L2

model to the entire document, it would generate a lot of falsepositives. Therefore,

as shown in Figures 7.1 and 7.3, the reason we can use the L2 model to improve

performance is that we only apply it to regions of documents where the L1 model

has made a prediction. Specifically, during extraction, theL2 classifiers use the

predictions of the L1 models to identify parts of the document that are predicted

to contain fields.

Figure 7.2 summarizes the learning process for this two-level learner (which

we call ELIEL2). As before (with ELIEL1) the training documents are converted

into a set of training instances that are used to build the L1 models and a set

of start/end pairs used to build the histogram for the tag-matcher. There is then

a combination and reduction step to get the training instances used by L2 from

those used by L1. The training instances from L1 are reduced in that we only

use instances that occur a fixed distance after a start or before an end. They are

combined in that we use the L1 start instances to pick the L2 end instances and we

use the L1 end instances to pick the L2 start instances. Once we have identified

the L2 start and end training instances we use them to build the L2 start and L2

end models.

Figure 7.3 summarizes the extraction process for the two-level approach. Given

a set of documents that we want to extract from, we convert these documents into

a set of instances. We apply our L1 models for start and end to these instances and

generate a set of predictions for starts and ends. The L1 predictions are then used
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Figure 7.2: L2 Learning: Overview

to guide which instances we apply the two-level classifiers to. We use the predic-

tions of the L1-end model to decide which instances to apply the L2-start model

to, and we use the predictions of the L1-start model to decidewhich instances

to apply the L2-end model to. Applying the L2 models to the selected instances

gives us a set of predictions which we pass to the tag-matcherto get our extracted

fields.

The L2 approach is based on the assumption that L1 has high precision but that

recall could be improved. In order to extract a fragment, we must identify both its

start and its end. However in many cases we identify the startof a fragment but

not the end or vice-versa. In these cases we fail to extract the fragment.

The start and end classifiers are likely to have high precision because of the
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Figure 7.3: L2 Extracting: Overview

imbalance in the data. We assume that the L1 predictions are high precision and

that if we predict a start or an end it is correct. Thus if we identify a start but failed

to identify the corresponding end, then there is likely to bean unidentified end in

the tokens following the start.

The intuition behind the two-level approach is that we use the unmatched L1

predictions (i.e. when we identify either the start or the end but not the other)

as a guide to areas of text that we should look more closely at.We use more

focused classifiers that are more likely to make a predictionon areas of text where

it is highly likely that an unidentified fragment exists. These classifiers are more

likely to make predictions due to a much lower data imbalanceso they are only

applied to instances where we have high probability of a fragment existing.

As the level of imbalance falls, the recall of the model riseswhile precision

falls. We use a L2 lookahead/lookback of 10 for our experiments so the imbalance

of the L2 data is approximately 10:1. This is much lower than the imbalance in the

L1 classifiers which can anything from 100:1 to 1000:1 depending on the dataset.

This enables us to improve recall without hurting precisionby identifying the

missing complementary tags for orphan predictions. If we have 100% precision

at L1 then we can improve recall without any corresponding drop in precision. In

practice, the drop in precision is proportional to the number of incorrect predic-
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Figure 7.4: Comparing L1 to L2: Precision

tions at L1.

7.2 Evaluation

We evaluated this two-level approach on the three benchmarkIE datasets using

the same methodology as previously.

7.2.1 Comparing L2 to L1

Figure 7.4 shows the Precision of this two-level approach compared to the preci-

sion of the one-level approach on the three benchmark datasets. On almost all of

the fields, L2 has lower precision than L1.

Figure 7.5 compares the recall of L1 and L2. In contrast to precision, recall

increases between L1 and L2 for all fields. The L2 approach results in higher

recall.

Figure 7.6 shows the f-measure of the L1 and L2 approaches. Wehave shown

already that precision falls and recall increases when we use L2. We are interested
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Figure 7.5: Comparing L1 to L2: Recall

in whether the increase in recall in enough to offset the fallin precision when we

consider f-measure. F-measure for L2 is higher than for L1 for almost all fields.

In fact only one of the 31 fields has higher f-measure at L1. Formany fields the

increase in f-measure at L2 is substantial.

We would like to determine whether the increase in f-measureat L2 is sta-

tistically significant. We cannot do statistical significance testing when we are

comparing against the published results of other systems. However because we

have controlled the L1 and L2 experiments and all variables in the experiment

are equal (so the data is paired), we can use a paired t-test totest for statistical

significance.

Figure 7.7 shows the results of the paired t-test for statistical significance for

the hypothesis that the f1 at L2 is higher than the f1 at L11. For all 31 fields, L2

is never statistically significantly worse than L1. On 21 of the 31 fields the L2

approach is statistically significantly better than the L1 approach.

We conclude that the two-level approach gives improved performance over a

one-level approach. Adding a second level of biased classifiers often gives sub-

1We used a one-tailed test withα=0.01.

86



Figure 7.6: Comparing L1 to L2: F-measure

field Significant field Significant

speaker yes req_exp yes

location no des_exp no

stime no req_degree yes

etime yes des_degree no

id no post_date no

title yes acquired yes

company no purchaser yes

salary yes seller yes

recruiter no acqabr yes

state no purchabr yes

city yes sellerabr yes

country no acqloc yes

language yes acqbus yes

platform yes dlramt yes

application yes status yes

area yes

Figure 7.7: F1 at L2 is statistically significantly better than F1 at L1
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Figure 7.8: L2 Precision for the Seminar Announcements dataset

stantial improvement in performance and never degrades performance. L2 gives

lower precision but compensates for this by giving an even larger increase in re-

call.

We saw in chapter 6 that undersampling uninformative tokenscaused precision

to fall and recall to rise. But the fall in precision was offset by the rise in recall so

f-measure remained relatively constant. With this two-level approach the increase

in recall is greater than the fall in precision. Thus f-measure is generally higher

and never lower than the one-level approach.

7.2.2 Comparing L2 to other IE systems

We compared the two-level approach to the other IE systems.

Figure 7.8 shows the precision on the Seminar Announcementsdataset of

ELIEL2 compared with other IE systems. Precision for ELIEL2 is lower than for

ELIEL1 on all 4 fields. Even though precision for L2 is lower than for L1, it is

still competitive with each of the other algorithms. It has second-best precision

for two of the 4 fields and is close to best for the other two.
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Figure 7.9: L2 Recall for the Seminar Announcements dataset

Figure 7.9 shows recall for ELIEL2 on the Seminar Announcements dataset.

ELIEL2 has the highest recall of any of the systems on 3 of the 4 fields.Recall for

speakerandlocation is much higher than for any of the other systems.

Figure 7.10 shows f-measure for the Seminar Announcements dataset. ELIEL2

has significantly higher f-measure than any of the competitor systems on the

speakerand locationfields (these are the more difficult fields). It is also among

the top performing systems on the other two fields.

Figure 7.11 shows precision for the Job Postings dataset compared to other

IE systems. In general ELIEL2 is competitive with the other IE systems although

it is outperformed by ELIEL1 . On thesalary, application, areaanddesired degree

fields ELIEL2 has the worst precision of any of the systems. On some of the other

fields it is among the best performing while in general it is inthe middle.

Figure 7.12 shows recall for the Job Postings dataset. ELIEL2 is the top per-

forming system on several fields and is among the top performing systems on most

fields.

Figure 7.13 shows f-measure for the Job Postings dataset. ELIEL2 is the top

performing system on 6 of the 17 fields. It is among the top performing systems
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Figure 7.10: L2 F-measure for the Seminar Announcements dataset

on several other fields. It is the worst performing system on one of the fields

(desired degree). (LP)2 is the best performing system on 4 fields and worst on 1

field. The results for ELIEL2 on multi-valued fields (e.g.platform, application,

area) are probably understated due to the conservative way that we evaluate our

system. The other systems probably use a form of OSO evaluation. For fields that

occur many times within documents the difference between the OSO and ASO

evaluations can be large.

Figure 7.14 shows precision on the Reuters Corporate Acquisitions dataset.

ELIEL2 ’s precision is competitive with Rapier on this dataset. This is a difficult

dataset for extraction and performance is lower than on other datasets. ELIEL2 ’s

performance indicates that when performance is poor, ELIEL2 has the potential to

make substantial improvements.

Figure 7.15 shows recall and figure 7.15 shows f-measure for ELIEL2 for the

Corporate Acquisitions dataset. ELIEL2 is the best performing system on most of

the fields. On most fields its performance is substantially better than Rapier and

HMM. HMM matches it one field and outperforms it on one field.

Figure 7.17, Figure 7.18 and Figure 7.19 summarize the performance of ELIEL2

against that of other IE systems. The horizontal axis shows the performance of

ELIEL2 while the vertical axis shows the performance of the competitor system.
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Figure 7.11: L2 Precision for the Job Postings dataset

Figure 7.12: L2 Recall for the Job Postings dataset
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Figure 7.13: L2 F-measure for the Job Postings dataset

Figure 7.14: L2 Precision for the Reuters Corporate Acquisitions dataset
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Figure 7.15: L2 Recall for the Reuters Corporate Acquisitions dataset

Figure 7.16: L2 F-measure for the Reuters Corporate Acquisitions dataset

Each point represents the performance of ELIEL2 vs a competitor on a single field.

Points that occur above the diagonal line indicate that the competitor system is do-

ing better while points occurring below the diagonal line indicate that ELIEL2 is

doing better.

On the precision graph, the points are clustered around the diagonal. For recall

and f-measure, the majority of points are below the diagonalor clustered close to
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Figure 7.17: L2 Precision summary

Figure 7.18: L2 Recall summary
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Figure 7.19: L2 F-measure summary

it. We conclude that ELIEL2 generally outperforms the other IE systems on the

three benchmark IE tasks.

7.3 Discussion

The instance filtering techniques described in chapter 6 cansignificantly improve

execution time without affecting performance but they do not significantly im-

prove the accuracy of the classifiers. Random undersamplingcan improve or hurt

performance depending on whether it deletes instances thatare informative or not.

The second instance filtering technique deletes instances that contain tokens that

are uninformative with respect to the positive class. The instances are likely to be

instances that are not close to the boundary so that deletingthem should not affect

accuracy.

Table 7.20 shows details of the errors made by ELIE. For all fields in the three

benchmark datasets we show the ratio of false positives to false negatives (FP:FN).

It also shows the percentage of false positives that were partially correct and the
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L1 L2

Dataset Field FP:FN%FPptl %FNptl FP:FN%FPptl %FNptl

SA speaker 0.17 22 62 1.05 17 8

SA location 0.19 76 67 0.51 75 20

SA stime 0.2 27 86 4.72 9 36

SA etime 0.05 64 92 0.93 36 18

Jobs id 0 0 100 0 0 100

Jobs title 0.29 71 58 0.9 56 23

Jobs company 0.14 9 10 0.27 14 2

Jobs salary 0.4 76 68 0.66 68 43

Jobs recruiter 0.41 22 22 0.52 21 11

Jobs state 0.79 9 24 1.11 9 6

Jobs city 0.56 1 28 0.95 1 1

Jobs country 0.36 0 6 0.44 0 3

Jobs language 0.25 41 45 0.52 30 10

Jobs platform 0.27 43 43 0.54 37 10

Jobs application 0.18 23 27 0.38 14 3

Jobs area 0.15 34 25 0.41 25 6

Jobs req_exp 0.28 8 41 0.92 6 9

Jobs des_exp 0.09 100 10 0.23 54 12

Jobs req_degree 0.21 0 34 0.53 2 1

Jobs des_degree 0.04 0 10 0.51 5 0

Jobs post_date 4.8 0 100 0 0 0

Reuters acquired 0.05 32 32 0.45 18 3

Reuterspurchaser 0.13 10 35 0.7 8 3

Reuters seller 0.06 1 6 0.24 2 0

Reuters acqabr 0.09 9 14 0.22 8 1

Reuters purchabr 0.07 5 11 0.2 8 1

Reuters sellerabr 0.05 1 4 0.15 2 0

Reuters acqloc 0.07 16 27 0.46 16 3

Reuters dlramt 0.24 27 53 1.39 15 14

Reuters status 0.22 23 35 0.87 21 8

Figure 7.20: ELIE error analysis

percentage of false negatives that were partially predicted.

For a false positive to be partially correct means ELIE extracted a fragment,

but that it was correct at only one end (either the start or endwas not predicted
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exactly). These kinds of predictions are still useful in a practical setting and a

less conservative method of evaluation might give some credit for these kinds of

errors. On several fields, a large proportions of the errors are of this form.

For a false negative to be partially predicted means that fora fragment that we

failed to extract, we predicted either the start or the end correctly, but may not have

predicted the other. These are the kinds of errors that facilitate the improvement

shown by L2 over L1. In general L2 gives a large reduction in these partial errors.

An investigation of the errors that ELIE produces reveals that at L1 most errors

are false negatives. Those that are false positives are mostly of two kinds. The

first are as a result of using exact matching for evaluation, where we have tagged

one end of the field correctly but not the other. The second occur as a result of

labelling errors on the data where we extract something thatshould have been

labelled but was not.

The ratio FP:FN shows that at L1, most of the errors are false negatives, while

at L2 we generally see an increase in false positives and a reduction in false neg-

atives. This corresponds with ELIE’s observed behaviour of high precision at L1

and high recall at L2.

ELIEL1 outperformed the systems that it was compared against on most fields

in terms of recall or f-measure. If high precision is required then ELIEL1 can be

used. We evaluated our system conservatively so its performance may be under-

stated in relation to competitors.

The L2 learner consistently improves recall while keeping precision high. On

more difficult fields the improvements are generally larger.The L2 classifier al-

ways improves recall and usually keeps precision high enough to improve F1.

It is likely that the accuracy of ELIE overall has several sources. Since the

L1 classifier alone often gives better performance than other IE algorithms, we

conclude that the use of Support Vector Machines as the learning algorithm and

the features that our systems uses gives rise to substantialimprovement compared

to the specialized learning algorithms and narrower feature-sets used by most IE

algorithms. Secondly the two-level classification that we have described can give

significant increases in performance. It increases recall while maintaining good

precision. In many cases, L2 improves ELIE’s L1 performance substantially.
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7.4 Summary

In this chapter we described a two-level classification approach to IE. This ap-

proach added a second phase to the one-level classification approach that was

previously described. The second phase is designed to increase recall. We find

that often false negatives are “almost” extracted (the start but not the end is ex-

tracted or the end but not the start). In the second phase ELIE is trained to detect

the end of a fragment given its beginning or the beginning of afragment given its

end.

We evaluated this two-level approach on the three standard IE benchmark

datasets. In comparison to L1 it improves recall at the expense of precision.

However the drop in precision is smaller than the rise in recall so L2 improves

f-measure on nearly all fields. The two level approach can improve recall while

maintaining high precision. We showed that the f-measure achieved by the two-

level approach was consistently better and never worse thatthat achieved by the

one-level approach. On 21 of the 31 fields that we evaluated iton the two-level

approach was statistically significantly better than the one-level approach.

ELIEL2 is among the top performing systems of the IE systems that we com-

pared it to. It is the best performing algorithm on the Seminar Announcements

and the Reuters Corporate Acquisitions datasets. It is consistently one of the best

on the jobs dataset.
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Chapter 8

The Pascal Challenge

8.1 Overview

The Pascal Challenge took place in November and December 2004. It was spon-

sored by the Pascal network and was organized mainly by Neil Ireson from Uni-

versity of Sheffield. The aim of the challenge was to assess current Machine

Learning methods for Information Extraction.

In chapter 3 we discussed the shortcomings of the methods used to evaluate

previous IE systems and the lack of a standard evaluation methodology which

would enable us to meaningfully compare the results of different IE systems. The

Pascal challenge aimed to define a standard methodology for evaluating IE sys-

tems and perform tests of different systems in controlled experiments to determine

which aspects of the system contributed to their performance.

The organizers annotated a dataset and specified an evaluation method. All

systems were required to use the same basic feature-set. Preprocessing was done

using the GATE preprocessor which gives token, POS and orthographic features.

It also provided a small number of named entity features (person, location, date).

8.2 Pascal Challenge Dataset

The Pascal Challenge dataset [24, 25] consists of 1100 call for papers (CFPs)

comprising 850 workshop CFPs and 250 conference CFPs . This corpus divided
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Figure 8.1: An example Call for Papers

into sub-corpora: training corpus (400 workshop CFPs), test corpus (200 work-

shop CFPs) and enrich corpus (250 workshop CFPs and 250 conference CFPs).

Most of the documents are from the area of computer science and the training and

test sets are temporally separate. We used only the train andtest corpora.

The annotation process took place over the course of severalmonths. Five ver-

sions of the training corpus were released to the participants before the corpus was

finalized. Each new version corrected errors that were identified in the previous

version.

Figure 8.1 shows an example call for papers. The documents inthis dataset

tend to be more structured than the other benchmark datasets. There are also

strong relationships between most of the fields. For exampleworkshopacronym

usually occurs just afterworkshopname. The various dates often occur in a certain
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Field train test Examples

workshopname 543 245 Second International Workshop on

Time Oriented Business Information Systems

workshopacronym 566 243 ZobIS 96, RTSS ’98

workshopdate 586 326 June 8-9 2000, September 1st-2nd

workshophomepage 367 215 http://www.cs.virginia.edu/wecwis2000

workshoplocation 457 224 Pisa, Italy ; Cottbus ; Cottbus, Germany

workshoppapersubmissiondate 590 316 March 1 ; June 3, 1996

workshopnotificationofacceptencedate391 190 Friday 27th March 1998

workshopcamerareadycopydate 355 163 Mar. 24, 2000

conferencename 204 90 15th International Conference on Conceptual Modelling

conferenceacronym 420 187 ACL/COLING ’98, ECAI-2000

conferencehomepage 104 75 www.acm.org/sigs/sigmm/MM99

Figure 8.2: Details of the Pascal Challenge dataset

order. e.g.workshopnotificationofacceptencedateusually occurs afterworkshop-

papersubmissiondate.

Figure 8.2 shows the fields along with examples and the occurrences of each

field in the training and test datasets. There are 11 fields: 8 relating to the work-

shop and 3 relating to the conference. All the fields are single-valued fields. Many

of the fields in this dataset are very similar. There are 4 datefields. These often

occur together in a document and use the same date format. Thedates must be

disambiguated using the limited context around each. Similarly, there are two

name fields, two acronym fields and two homepage fields, one each for workshop

and conference.

8.3 Evaluation

We submitted a single entry to the Pascal Challenge. We used awindow length

of 3 and randomly undersampled 50% of the negative instances. Most systems

submitted more than one entry. The full set of results are available at the Pascal

Challenge web-site [2]. The web-site states that participants may only reproduce

their own results and their rank in comparison to other systems. Table 8.3 shows

the rank of our system for each field. When reporting the rank we only count the
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Field Train Test

f-measurerank f-measurerank

workshopname 55.5 3 43.9 5

workshopacronym 68.3 4 34.7 8

workshopdate 70.9 5 45.7 8

workshophomepage 62.8 5 41.7 9

workshoplocation 55.5 5 38.7 8

workshoppapersubmissiondate 70.5 6 52.7 9

workshopnotificationofacceptancedate71.9 7 58.8 9

workshopcamerareadycopydate 68.7 7 44.1 10

conferencename 66.5 2 48.3 5

conferenceacronym 69.1 2 20 10

conferencehomepage 63.9 2 5.2 10

Figure 8.3: ELIE’s rank performance on the Pascal Challenge

best performing of each competitor system’s entries (some systems submitted sev-

eral entries with different parameters). On some of the fields our entry is among

the top performers for the train set. However our system performs poorly on the

date fields. On the test set we perform much worse than we did onthe train set.

ELIE performed poorly on the date fields. An examination of the errors re-

vealed that in many cases we identified the date but as the wrong kind of date.

Often we would have multiple field predictions for a date and would have identi-

fied it as the correct type of date but would have also predicted it as another type

of date with higher confidence.

The best performing system on average was Amilcare, submitted by the Uni-

versity of Sheffield group. This system is based on the (LP)2 algorithm. It had

exceptional performance on the date and acronym fields whileits performance was

mediocre on some of the other fields. For example, on the test set it was best for

three of the 4 date fields and both the acronym fields. On theconferenceacronym

field it had an f-measure that was 41% better than the second placed system while

for workshop acronym, its recall was 25% better than the second placed system.

The reason that (LP)2 outperformed all the other systems is because of its ability

to build rules based on the relationship between different fields. There are strong

relations between fields in this dataset.
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Another system that was one of the top performing was that submitted by

ITC-IRST. This was a one-level SVM approach that is similar to ELIEL1. It im-

plemented the instance filtering strategy of Gliozzoet al.

ELIE performs poorly on this task. There are several reasons for the poor

performance. The first is that this dataset has very high imbalance. This means

that recall will be low at L1 so there is not much potential forimprovement at L2.

One of the systems addressed this problem by aggressively filtering instances. Our

system does not filter instances in a manner that will addressthe class imbalance

problem. ELIE performs worse on the test data than on the train data. This is

also a problem caused by the large imbalance in the dataset. The models learned

on the dataset have high precision due to the very high class imbalance. These

high precision learners don’t transfer well to the test dataset. This also caused

overfitting of the training data. Because of the high class imbalance we only make

positive predictions for instances that are very close to positive instances from the

training data.

The second reason is that ELIEL2 learns each field independently. It is not

capable of learning contextual information between fields.It deals poorly with

the date fields in this dataset. These fields are highly contextual. The occurrence

of one of them strongly affects the probability of another occurring. Our system

identified most of the dates but it often confuses one type of date with another.

8.4 Discussion

The stated aims of the original proposal [1] were:

1. Define a methodology for the fair comparison of machine learning algo-

rithms for IE.

2. Define a publicly available resource for evaluation that will exist beyond the

lifetime of the challenge.

3. Perform actual tests of different algorithms in controlled situations so as to

understand what works and what doesn’t.
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The first aim was met by defining a methodology for scoring extractions and defin-

ing splits to be used for testing and training the data. The scoring methods that

were decided on were the same scoring methods that we chose touse when evalu-

ating our system. No credit is given for partial matches. Thesystem must extract

all occurrences of the instances to get full credit (ASO evaluation). This is a con-

servative and fair method of evaluating an IE system. It is hoped that all future

systems will adopt this scoring methodology for evaluation.

The Pascal Challenge resulted in another dataset being madeavailable to the

IE community. This dataset is quite different to the other IEbenchmark datasets.

The documents are longer and there are strong relations between some of the

fields in the dataset. This is a valuable resource and will be useful for evaluating

IE systems in the future. Unfortunately the annotations forthe test data have not

been made available to the community - only the annotations for the training set

are currently available. This may hamper the adoption of this dataset as another

standard benchmark.

The third stated aim of the challenge was to perform controlled tests of the

various aspects of the IE system to understand what aspects contribute to perfor-

mance. The feature-set was fixed for the challenge so that allsystems had to use

the same feature-set. However this does not allow us to compare the learning al-

gorithms of the other systems. Instead it only excluded one of many variables that

can cause performance differences between the systems. Since we don’t separate

any other aspect of the IE system it merely punishes systems with good feature-

sets and benefits systems with poor feature-sets. The actuallearning algorithm, the

way relational features are handled, the length of window for creating relational

features, instance pruning, attribute pruning, post-processing of predictions, etc

all contribute to the performance. Fixing the feature-set does not really make for a

more valid comparison as there are still so many other variables between systems

that can contribute to performance. No other aspects of the IE systems were fixed

and the contribution of features to performance was not examined.

(LP)2 was the best performing system on average. A large part of itsperfor-

mance came from its ability to learn rules about relations between fields. This

gave it high performance on the data and acronym fields as theyhad strong rela-

tional dependencies on other fields.
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8.5 Summary

In this chapter we described the Pascal Challenge and discussed ELIE’s perfor-

mance in it.

The Pascal Challenge identified two shortcomings of ELIE:

• It fails when there is very high class imbalance. ELIE does well when the

class imbalance is moderate as it takes advantage of high precision models

at level one to improve recall at level 2. However when class imbalance is

very high, recall at level one becomes so low that there is notmuch scope

for improvement at level 2.

• It does not take advantage of relations between different fields. ELIE as-

sumes that all fields are independent and doesn’t use the presence of one

field to help learn the presence of another. On the Pascal dataset there is a

strong relationship between some of the fields and taking advantage of this

information can improve performance.

The Pascal Challenge highlighted the variability in performance of different IE

systems. Systems that performed well on some fields performed poorly on others.

It also highlighted the effect of data imbalance on performance, the importance of

relational information between fields and the need for a wideand varied testbed

of IE datasets, each challenging different properties of the IE systems.
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Chapter 9

Multi-field Contextual Extraction

Level 1 and Level 2 extract a single field at a time. They treat extraction of differ-

ent fields as independent tasks. However on some tasks there is a strong relation-

ship between the occurrence of different fields. The two-level approach described

so far does not exploit this contextual information. On the Pascal dataset, (LP)2’s

ability to learn contextual rules based on the occurrence ofother fields gave it a big

advantage on fields that have a strong contextual dependenceon other fields. Our

approach of treating all the fields as independent worked on the standard bench-

mark datasets but failed for the Pascal data. By assuming that all the fields are

independent we fail to exploit the structure that exists between the data.

Figure 9.1 shows field-pair probability data for the SeminarAnnouncements

dataset. For field pair (f1, f2)P f2|f1 gives the probability of the next field being

f2 given that f1 has occurred. If we identify a field as being aspeaker, the most

probable field to follow isstimewith probability 0.63. The most likely fields to

follow stimeis etime. The most likely field to followetimeis location. This shows

that many of the Seminar Announcements have a certain amountof structure with

thespeakerbeing listed first, thestimeandetimenext and thelocationbeing listed

last. It is twice as likely that anetimefollows anstimethan anstimefollows an

etime. There are some combinations that are very unlikely, e.g. ifwe identify a

speaker, the next field is highly unlikely (P=0) to be anetime, but very likely to

be astime(P=0.69).

Figure 9.2 show the 10 most likely field pairs for the Job Postings dataset. The
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f1 f2 Pf2|f1

speaker stime 0.63
etime location 0.6

locationspeaker0.51
location stime 0.47

stime etime 0.44
stime location 0.31

speakerspeaker0.27
etime stime 0.23
etime speaker0.18
stime speaker0.15
stime stime 0.1

speakerlocation 0.1
locationlocation 0.02
location etime 0.01
etime etime 0

speaker etime 0

Figure 9.1: Field-pair probabilities for the Seminar Announcements dataset

f 1 f 2 Pf2|f1

country state 0.58
state city 0.55

recruiter country 0.39
area area 0.37

platform platform 0.37
applicationapplication 0.36
language language 0.33

id country 0.28
company city 0.24
company company 0.23

Figure 9.2: The 10 most likely pair sequences for the Job Postings dataset

country, stateandcity fields are very likely to co-occur together in that order. If

we identify anareafield, the most likely next field is anotherarea. This is also the

case for theplatform, applicationandlanguagefields. This is because these are all

multi-valued fields that tend to occur in lists in the dataset. E.g. a job application
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f1 f2 Pf2|f1

status acquired 0.58
sellercode seller 0.43
purchabr acqabr 0.43
acqcodepurchaser0.43

purchaser status 0.37
purchcodepurchaser0.36

acqabr purchabr 0.35
dlramt purchabr 0.32
dlramt acqabr 0.29

purchcode acqabr 0.28

Figure 9.3: The 10 most likely pair sequences for the ReutersCorporate Acquisi-
tions dataset

may list all languages required in a sequential list. There are many combinations

of fields that are very unlikely in this dataset, e.g.title is never followed by the

post_date: the title tends to occur near the beginning of documents while the

post_datetends to occur near the end.

Figure 9.3 show the 10 most likely field pairs for the Reuters Corporate Acqui-

sitions dataset. From this we see thatstatusis likely to be followed byacquired

andpurchaseris likely to be followed bystatus. This indicates that some sen-

tences will be structuredpurchaser- status- acquired. An example of such a

sentence is ‘<purchaser>General Partners Inc.</purchaser> said it was <status>

prepared to raise its bid</status> for <acquired>GenCorp</acquired>.’

Figure 9.4 show the 10 most likely field pairs for the Pascal Challenge dataset.

There is quite a bit of structure in this dataset. For example, if we identify a

workshopnotificationofacceptencedate, it is very likely that the next field will be a

workshopcamerareadycopydate(P=0.84). This indicates that in the training data,

for 84% of occurrences ofworkshopnotificationofacceptencedatethe following

field is workshopcamerareadycopydate. There are many other strong relations in

this dataset, many involving the date and acronym fields. Theconferencename

field is most likely to be followed byconferenceacronym, workshopnameis most

likely to be followed byworkshopacronymandworkshoppapersubmissiondateis

very likely to be followed byworkshopnotificationofacceptencedate.
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f1 f2 Pf2|f1

workshopnotificationofacceptencedateworkshopcamerareadycopydate 0.84

workshoppapersubmissiondate workshopnotificationofacceptencedate0.65

conferencename conferenceacronym 0.5

workshoplocation workshopdate 0.45

workshopcamerareadycopydate workshopdate 0.36

workshopacronym workshopacronym 0.26

conferencehomepage workshopname 0.26

workshopname workshopacronym 0.26

workshopdate workshoplocation 0.26

workshopname workshopdate 0.25

Figure 9.4: The 10 most likely pair sequences for the Pascal dataset

The pair-probabilities for these datasets indicate that there in an innate level of

structure in the documents and many fields are strongly contextually co-dependent

and tend to co-occur together.

However these pair-probabilities do not tell the whole story. They indicate

that there is a strong structural relationship between certain fields. However the

strength of that relationship also depends on the distance between the fields in the

document. In the Pascal dataset the fields are likely to occurvery close together

in the document whereas in the Seminar Announcements dataset the location is

likely to follow the etimebut it is not as likely to occur directly after theetime.

Thus the relationship between fields is stronger when they are likely to occur

close together in a particular sequence than when they are just likely to occur in

sequence.

Our system treats the fields as independent. In doing so it fails to take advan-

tage of any structure between fields in the dataset. In this chapter we discuss some

enhancements to ELIE that can take account of contextual information between

fields.

9.1 Adjusting Prediction Confidence

Because we treat the extraction of each field as independent tasks, it is possible for

extractions of different fields to overlap or for the same fragment to be extracted
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Figure 9.5: Multi-level multi-field extraction

as different fields. This is not generally a problem on the 3 benchmark datasets.

However on the Pascal dataset ELIE often extracted multiple date fields for date

fragments because the dates are all similar and tend to occurclose together in

the document. It is not possible for a fragment to be more thanone field so it is

desirable to eliminate these ambiguous predictions. When we make ambiguous

extractions, i.e. we make more than one field prediction for the same piece of

text, we must choose one of the predictions and eliminate theothers. We choose

the extraction with the highest confidence based on the contextual probability.

For each ambiguous extraction, we choose the field that is most likely given the

previous field.

9.2 Adding Mult-Field Contextual Features

In order to take advantage of the structure of the documents and relations between

fields, we add multi-field contextual features. For each instance in the dataset,
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we add two features: one for the previous field and one for the next field. When

learning our models we use the annotations in the dataset to add features to each

instance for the next occurring instance and previous occurring instance. When

extracting we first run our two-level classifier for each fieldand use the predic-

tions for these classifiers to add previous instance and nextinstance features to the

dataset. Once these features have been added, we re-run the two-level learner on

the dataset with these new features.

Figure 9.5 summarizes this process. In the training phase welearn a two-level

model for each field with the addition of features for previous and next fields.

When training these features can be taken from the annotations. The extraction

process is more complex. From our test documents we generatea set of instances.

We pass these instances to the two-level model for each field to get a set of extrac-

tions for each fields. We resolve any ambiguous extractions to ensure that different

fields don’t cover the same text. We then use these extractions to add new features

to each instance for previous and next fields. We then pass thedataset with these

new features back to each of the two level models and repeat the extraction pro-

cess with the contextual features present. We could iteratively repeat this process

but we only do it once.

9.3 Evaluation

Figure 9.6 shows the performance of this multi-level approach on the Seminar

Announcements dataset. The addition of the multi-field features gives an increase

in performance for thestimefields but not any of the others. The f-measure for

the locationandetimefields drops when we add the relation features.

9.4 Discussion

In this chapter we described a simple approach to extending ELIE to take account

of relations between different fields. This approach did notgive any significant

improvement on the SA dataset. We showed by measuring the pair-probabilities

that there is some inherent structure in the dataset but thisapproach fails to take
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Figure 9.6: F-measure for the Seminar Announcements dataset using multi-field
extraction

advantage of this structure.

The features used may be too coarse and adding them to all instances may be

adding noise to the data. The features only represent the next field that occurred

but don’t represent the distance to that field. Fields that occur adjacent to each

other are represented in the same way as fields that occur far apart. A more so-

phisticated approach might break this feature down into several different features

that represent how close the field occurred to the previous field or only add the

contextual features if a field occurs close to another.

Another problem is that that when training we use the annotations from the

training data, so there will be very little noise, whereas for extracting we use the

predictions from L2 so there will be lots of noise.

9.5 Summary

In this chapter we discuss the benefit of using multi-field contextual information

about multiple fields to improve extraction. We motivate this by giving field-pair

probabilities for the various datasets. These probabilities show that there is strong

contextual dependence between fields in the documents and the ability to use this
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information could give large potential for improving performance.

We tried a simple method of adding features for relations between fields and

found that it didn’t improve performance. A more sophisticated approach is re-

quired to take advantage of contextual structure between fields.
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Chapter 10

Conclusion

In summary, we developed an approach to IE that uses standardMachine Learning

techniques. We investigated the various components of thissystem and analyzed

their contribution to the overall performance of the system. We presented a new

two-level classification approach to IE that achieves state-of-the-art performance.

10.1 Discussion

There are many aspects that contribute to the performance ofan IE system. We

have investigated the different aspects separately and assessed how important their

contribution is to the overall performance of our IE system.

We discussed various methods of evaluating IE systems and the shortcomings

of each. We used the most conservative method to evaluate ourown system.

Each IE system has different aspects that contribute to its performance. Gen-

erally they do not analyze in detail which components contribute to the overall

performance of the system. It seems likely that for BWI, boosting contributes

strongly to its performance. It seems unlikely that the simple precise rules that

it learns would perform as well without the boosting step. Boosting is a general

technique that could be applied and incorporated into any ofthe IE systems de-

scribed. With (LP)2 it seems likely that a large part of its good performance comes

from the contextual rules and the ability to learn rules thatuse the occurrence of

other fields. Learning rules based on other fields is a technique that should be
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incorporated into all IE systems to take advantage of the inherent structure in the

data and the relationship between fields. With ELIEL1 the performance came from

a combination of the learning algorithm and the features. Wesaw that SVM was

the best performing learning algorithm and was substantially better than several

alternative algorithms. The actual learning algorithm used by (LP)2 is quite simple

and is likely that its performance could be improved by usinga stronger learning

algorithm. The features used also contribute to performance. Our system has a

richer feature-set than many of the competitor IE systems. Other IE systems can

improve performance by having as rich a feature-set as possible.

The two-level approach to classification that we introduce can give large in-

creases in performance. This method of combining sets of classifiers, and using

high-precision classifiers to filter the predictions of high-recall classifiers, can be

used by any IE system to improve its performance.

In general, IE systems to date are built from scratch. They combine a variety

of components, some of which give good performance and some of which give

sub-optimal performance. Future IE systems should combinecomponents that

have been shown to have high performance. These components are:

• A rich feature representation that encourages generalization.

• The ability to filter uninformative instances and overcome problems caused

by class imbalance.

• A state-of-the-art Machine Learning algorithm that gives high performance

on the IE task.

• Enhancements to the basic learning algorithm that improve performance

such as boosting, bagging, stacking.

• Methods of combining the predictions of different models toimprove per-

formance such as our two-level approach.

• The ability to incorporate information about other fields and represent struc-

ture and relations between fields.
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10.2 Future Work

There are several directions for future work. The first direction is investigating

better ways to incorporate contextual information betweenfields into the model.

We showed in chapter 9 that there are strong relations between some of the fields

in the dataset. The occurrence of one field can affect the probability of another

field occurring. Some fields are likely to occur in sequence and some fields are

likely to occur together. ELIE learns to extract fields independently. It doesn’t take

account of other fields when trying to learn a particular field. The Pascal dataset is

one where some fields tend to occur in close proximity to each other. Elie doesn’t

use this information when learning. Using information about the relationships

between different fields and using the predictions of one field to guide predictions

of another has the potential to improve performance when thedata is structured

and fields tend to co-occur in the data.

Our two level approach uses the orphan predictions for starts to identify areas

of the documents that we should take a closer look at to see if we should identify

an end there. This multi-level approach could be extended from start-end pairs

to field-pairs. For example, if we know thatetimeis likely to follow stime, we

could apply anetimeclassifier that is more specialized at identifyingetime to

areas of documents where we identified anstimebut didn’t identify anetime.

Another approach might be to alter the confidence of a prediction based on the

occurrence of other fields nearby. For example, we could increase the confidence

in anetimeprediction if it occurs soon after anstimeprediction. Another approach

might add features to the dataset that the learner can use to learn the relations

between different fields. We tried this approach in chapter 9but a more detailed

representation that takes account of the distance between occurrences of the fields

might be more successful.

The second direction for future work is to investigate methods for dealing with

the class imbalance problem that occurs when representing IE as a token classifi-

cation task. ELIE takes advantage of moderate class imbalance. When the class

imbalance is moderate, the one-level approach gives high precision and moderate

recall. ELIE’s two level approach can then improve recall. When the classimbal-

ance is very high, the recall from the one-level approach canbe so low that ELIE’s
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two level approach has little potential for improving recall. The methods that we

investigated for undersampling negative instances improved execution time with-

out affecting accuracy but they didn’t improve accuracy. Weneed to find methods

that can be applied to datasets with high imbalance that willimprove recall to a

level where ELIE’s two level approach can significantly improve performance.

A third direction for future work is to investigate Active Learning approaches

to IE. The annotation of training data is the most time consuming part of IE. It is

desirable to minimize the number of documents that need to beannotated while

at the same time maximizing performance. Active Learning involves actively se-

lecting which documents are put forward for annotation so asto maximize the

information that the learner receives. We would like to select the documents that

are most informative and ignore documents that don’t give any improvement. One

method to select documents could use disagreement among models built with dif-

ferent redundant views of the data. We saw that using only thetoken features

and using all features except the token features both gave good performance. We

could build two models using these two different views of thedata and choose to

annotate documents where they disagree on their predictions.

Another direction for future work is to develop methods for formal theoretical

analysis of IE. To date there has been little work in this areaand work in IE has

been largely empirical. As IE matures it would be desirable to develop formal

theoretical models that describe the IE task and can be used to derive performance

bounds for IE systems.
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Appendix B

A Simple Analysis of Two-level

Classifier Behaviour

To date IE research has been largely empirical. Researchershave ideas, they im-

plement them and they are tested on the standard IE datasets.Machine Learning

and Text Classification have strong theoretical foundations but to date there has

been little formal theoretical analysis of the IE task and the properties of IE sys-

tems. Such analysis would be useful in analyzing the behaviour of systems and in

estimating upper bounds on their performance.

In this chapter we introduce a simple way to analyze and modelELIE’s be-

haviour.

B.1 Modelling ELIE ’s Behaviour

ELIE consists of two levels. Each level consists of start and end classifiers. ELIE’s

performance depends on the performance of each level and of the start and end

classifiers.

Figure B.1 shows the confusion matrices for the L1 and L2 start and end clas-

sifiers (TP, FP, TN and FN refer to true positives, false positives, true negatives

and false negatives respectively). The performance of the ensemble as a whole

depends on the performance of these various components.

We can model the probability of the ensemble correctly predicting a start or
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Figure B.1: Confusion matrices for L1 and L2 start and end classifiers

Figure B.2: ELIE ensemble start and end confusion matrices
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end using by listing the conditions under which the ensemblewill make start or

end predictions. Figure B.2 shows the confusion matrices for the ensemble. The

notation signifies the probability that a prediction is madein each quadrant of the

confusion matrix. For example,PsAs means predict start where it is actually a

start.PsAŝ means predict a start where it is actually not a start.

B.2 Calculating Confusion Matrix Probabilities

We can convert a logical expression such as (AND (OR a b) c) into an expression

for computing its probability such as (* (+ p(a) (- p(b) (* p(a) p(b)))) p(c)) where

p(x) is the probability of x. To perform this conversion we apply the axioms of

probability theory, assuming that everything is independent:

p(a ∨ b) = p(a) + p(b) − p(a ∧ b)

p(a ∧ b) = p(a) ∗ p(b)

p(¬a) = 1 − p(a)

In addition there is mutual exclusion between the four quadrants of the con-

fusion matrix. Each prediction falls into exactly on of the four quadrants for its

confusion matrix. If two predictions are mutually exclusive they cannot occur

together. Therefore

p(a ∧ b) = 0 if a and b are mutually exclusive

p(a ∨ b) = p(a) + p(b) if a and b are mutually exclusive

B.3 ELIE : A Logical Representation

We can describe the conditions under which Elie will make a prediction as logical

combinations of the individual classifiers. Listing the conditions under which the

ensemble will make a prediction is relatively easy, but we must also represent the

fact that there is mutual exclusion between the four quadrants of each confusion

matrix. The mutual exclusion for each of the start and end classifiers for level 1

and level 2 are:

l1_s_mutex = AND(

XOR(l1_ps_as,OR(l1_pxs_as,l1_ps_axs,l1_pxs_axs)),

XOR(l1_pxs_as,OR(l1_ps_as,l1_ps_axs,l1_pxs_axs)),
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XOR(l1_ps_axs,OR(l1_ps_as,l1_pxs_as,l1_pxs_axs)),

XOR(l1_pxs_axs,OR(l1_ps_as,l1_ps_axs,l1_pxs_as)));

l1_e_mutex = AND(

XOR(l1_pe_ae,OR(l1_pxe_ae,l1_pe_axe,l1_pxe_axe)),

XOR(l1_pxe_ae,OR(l1_pe_ae,l1_pe_axe,l1_pxe_axe)),

XOR(l1_pe_axe,OR(l1_pe_ae,l1_pxe_ae,l1_pxe_axe)),

XOR(l1_pxe_axe,OR(l1_pe_ae,l1_pe_axe,l1_pxe_ae)));

l2_s_mutex = AND(

XOR(l2_ps_as,OR(l2_pxs_as,l2_ps_axs,l2_pxs_axs)),

XOR(l2_pxs_as,OR(l2_ps_as,l2_ps_axs,l2_pxs_axs)),

XOR(l2_ps_axs,OR(l2_ps_as,l2_pxs_as,l2_pxs_axs)),

XOR(l2_pxs_axs,OR(l2_ps_as,l2_ps_axs,l2_pxs_as)));

l2_e_mutex = AND(

XOR(l2_pe_ae,OR(l2_pxe_ae,l2_pe_axe,l2_pxe_axe)),

XOR(l2_pxe_ae,OR(l2_pe_ae,l2_pe_axe,l2_pxe_axe)),

XOR(l2_pe_axe,OR(l2_pe_ae,l2_pxe_ae,l2_pxe_axe)),

XOR(l2_pxe_axe,OR(l2_pe_ae,l2_pe_axe,l2_pxe_ae)));

mutex = AND(l1_s_mutex, l1_e_mutex, l2_s_mutex, l2_e_mutex);

In the above conditions the notation is of the form level_prediction_actual with

x signifying negation. So l1_ps_axs indicates that at level1 we make a start

prediction that is actually not a start. The conditions required to make a prediction

at L1 are:

l1_ps = OR(l1_ps_as, l1_ps_axs);

l1_pe = OR(l1_pe_ae, l1_pe_axe);

The conditions required to make a prediction at L2 are:

l2_ps = AND(l1_pe, OR(l2_ps_as, l2_ps_axs));

l2_pe = AND(l1_ps, OR(l2_pe_ae, l2_pe_axe));

We can estimate the probabilities for each quadrant of the ensemble confusion

matrix. The prob function converts a logical expression to an expression for com-

puting its probability.

ps_as = OR(l1_ps_as, AND(l1_pe, l2_ps_as));

prob_ps_as = prob(ps_as, mutex);

ps_axs = OR(l1_ps_axs, AND(l1_pe, l2_ps_axs));

prob_ps_axs = prob(ps_axs, mutex);

ps_axs = OR(l1_ps_axs, AND(l1_pe, l2_ps_axs));
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prob_ps_axs = prob(ps_axs, mutex);

pxs_as = OR(l1_pxs_as, AND(l1_pe, l2_pxs_as));

prob_pxs_as = prob(pxs_as, mutex);

pxs_axs = OR(l1_pxs_axs, AND(l1_pe, l2_pxs_axs));

prob_pxs_axs = prob(pxs_axs, mutex);

This give us a large complex logical expression that describes the probability for

each quadrant of the ensemble confusion matrix. To simplifythis expression we

can put values at L1 and then use some logical expression software1 to simplify

the resulting expression. If we simplify the expression to asingle variable then

we can plot the behaviour of the system as a function of that variable.

B.4 Plotting ELIE ’s Behaviour

The logical expressions generated that describe ELIE’s behaviour are too complex

to be useful in practice. However if we make some simplifyingassumptions about

the values that occur in the confusion matrix we can greatly simplify the resulting

logical expressions. If we represent all the values in the quadrants using a single

variable, then we can plot the performance of Elie as a function of that variable.

We plot the behaviour of the ensemble of start classifiers. The end classifiers will

have similar behaviour.

Figure B.3 shows the confusion matrices for L1 and L2 as a function of a

single variable. To represent the confusion matrices with asingle variable we

make some simplifying assumptions.

We assume that the false-positive rate for L1 start and end, and also the false

negative rate for L2 start and end, are all equal to some valueα. We also assume

that all remaining probability mass is distributed among the other 3 cells of each

confusion matrix (this assumes that the dataset is balanced) and we assume that

everything else is probabilistically independent.

This allows us to see if the ensemble is robust to lower precision at level 1 and

lower recall at level 2. Asα increases, the number of false positives at L1 and the

number of false negatives at L2 increases.

1We use MuPAD and its ‘simplify’ function to simplify the logical expressions.
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Figure B.3: Confusion matrices for L1 and L2, starts and ends, as a function of a
single variable

Figure B.4 shows the probability of predicting a start that is actually a start,

i.e. a true positive, as a function ofα. As α goes to 1, the probability goes to

zero. The fall in pPSAS is non-linear and gradual. The upper bound is rather low

(approximately 0.4). This comes from the assumption that the remaining proba-

bility mass (1-α) is distributed equally among the other 3 cells of each confusion

matrix. This assumes that the number of false positives and false negatives equal

the number of true negatives. Clearly this is not the case as in a real world system

(especially if the data is imbalanced) there are likely to bemore true negatives

than false positives or false negatives. The upper bound would be higher if we

made a more optimistic assumption about the distribution oferrors.

Figure B.5 shows the probability of predicting a start that is actually not a start,
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Figure B.4: The probability of predicting a start that is actually a start (PS_AS)

Figure B.5: The probability of predicting a start that is actually not a start
(PS_AXS)

i.e. a false positive. This increases constantly asα increases.

Figure B.6 shows the probability of not predicting a start where we should

have predicted a start (i.e. false negative). This goes towards 1 asα goes to 1.

However it only starts to increase asα goes above 0.5.

Figure B.7 shows the probability of not predicting a start that is actually not

a start (true negatives). Asα goes to 1, the probability of correctly predicting a
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Figure B.6: The probability of not predicting a start that isactually a start
(PXS_AS)

Figure B.7: The probability of not predicting a start that isactually not a start
(PXS_AXS)

negative goes to 0.

In both cases where we don’t predict a start (figure B.6 and figure B.7) the

upper bound is much higher than cases where we do predict a start. This indicates

that the ensemble of start classifiers is more likely to predict a token as not being a

start than as being a start, i.e. the ensemble is predisposedto negative predictions.
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Figure B.8: Precision, Recall and F1 for the ensemble

Figure B.8 shows the precision, recall and f1 for the ensemble of start classi-

fiers based on the probabilities as a function ofα. It shows that the ensemble is

predisposed to high precision. It also shows that asα increases both precision and

recall fall. However precision falls at a higher rate than recall. The ensemble’s

recall is more robust to errors than its precision as it fallsmore gradually asα

increases.

B.5 Summary

In this chapter we described a method of analyzing the behaviour of ELIE. We

listed the logical conditions necessary for the start or endclassifiers to make a

prediction. We converted these logical expressions to probabilistic expressions

and used mathematical analysis software to simplify these expressions. We then

made some simplifying assumptions that represented the systems performance as

a function of a single variable (α). We plotted the expected behaviour of ELIE’s

start classifier for all four quadrants of the ensemble confusion matrix and used

these expected values to plot precision, recall and f-measure.

The gives us a way to model the expected behaviour of our system. We can

adjust the distributionα among the cells of the confusion matrix to estimate the

performance of the system. The distribution that we chose assumes high precision
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at level 1 and high recall at level 2, with the remaining probability mass distributed

equally among the remaining cells of the confusion matrix. We saw that the en-

semble was predisposed to high precision and lower recall with this configuration

and that the ensemble is more likely to predict negatives than positives.
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Appendix C

Full list of Features

This appendix gives details of all the features used by ELIE. Each instance en-

codes all these features for the token it is centered on, as well as for a predefined

number of tokens before and after.

C.1 Token features

ELIE uses all tokens that occur in the training data as features. These are depen-

dent on which words occur in the training document and are toonumerous to list

here.

C.2 POS features

POS tagging uses Brill’s POS tagger. There are 36 POS features.

CC Coordinating conjunction. E.g. and, both, but.

CD Cardinal number. E.g. mid-1890, nine-thirty.

DT Determiner. E.g. all, an, another, any.

EX Existential there. E.g. there.

FW Foreign word. E.g. alais, je, jour.
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IN Preposition or subordinating conjunction. E.g. astride, among, upon, whether.

JJ Adjective. E.g. regrettable, calamitous, first.

JJR Adjective, comparative. E.g. bleaker, braver, breezier, briefer.

JJS Adjective, superlative. E.g. calmest, cheapest, choicest, classiest, cleanest.

LS List item marker. E.g. A, A., 1.

MD Modal. E.g. can, cannot, could, couldn’t.

NN Noun, singular or mass. E.g. Casino, afghan, shed, thermostat.

NNS Noun, plural. E.g. undergraduates, products, bodyguards.

NP Proper noun, singular. E.g. Conchita, Trumplane, Christos.

NPS Proper noun, plural. Americans, Americas, Amusements.

PDT Pre-determiner. E.g. all, both, half, many.

POS Possessive ending. E.g. ’s

PP Personal pronoun. E.g. hers, herself, him, himself.

PP$ Possessive pronoun. E.g. her, his, mine, my.

RB Adverb. E.g. occasionally, unabatingly, maddeningly.

RBR Adverb, comparative. E.g. further, gloomier, grander.

RBS Adverb, superlative. E.g. best, biggest, bluntest.

RP Particle. E.g. aboard, about, across, along.

Sym Symbol. E.g. @, =

To To.

UH Interjection. E.g. Goodbye, Gosh, Wow.

VB Verb, base form. E.g. ask, assemble, assess, assign.
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VBD Verb, past tense. E.g. pleaded, swiped, soaked.

VBG Verb, gerund or present participle. E.g. telegraphing, stirring, focusing,

angering.

VBN Verb, past participle. E.g. chaired, used, experimented.

VBP Verb, non-3rd person singular present. E.g. cure, lengthen, brush, termi-

nate.

VBZ Verb, 3rd person singular present. E.g. marks, mixes, displeases, seals.

WDT Wh-determiner. E.g. that, what, which.

WP Wh-pronoun. E.g. what, which, who, whom.

WP$ Possessive wh-pronoun. E.g. whose.

WRB Wh-adverb. E.g. how, however, whenever, where.

C.3 Gazetteer Features

The gazetteer consists of a set of lists. If a token occurs in one of the lists it is

tagged with the name of that list and a feature is added to the instance. The lists

that are contained in the Gazetteer are:

firstname A list of first-names taken from the U.S. census Bureau.

lastname A list of last-names taken from the U.S. census Bureau.

title List of titles such as Senator, Miss, Mr, Prof.

titlepost Titles that occur after a name e.g. Jr, Esq.

city A list of cities from around the world.

country A list of countries.

currencyunit A list of currencies from around the world.

132



location A list of location descriptors e.g. Creek, County, Valley.

months The 12 months of the year.

numbers A list of numbers in text form e.g. One, Thirty.

province A list of provinces in America and Canada.

street A list of street address words. e.g. Avenue, Boulevard.

timeampm Words describing whether time is am or pm. e.g. am, noon, midnight.

timeunit Units of time, e.g. hours, minutes.

uspssecondaryA list of secondary location identifiers from the U.S. postalser-

vice, e.g. Floor, Room, Apartment.

states List of American states.

stopwords A list of common stopwords.

C.4 Orthographic Features

Orthographic features encode information about the type oftext that appears in the

token. Some of the orthographic features, e.g. symbol, special, punctuation,are

defined in the configuration file.

controlchar Token is a control character.

symbol Token is a symbol. E.g. $, £.

special Token is a pre-defined special character. E.g. ‘\n’.

punc Punctuation. E.g. ,.!?

lbrac Left bracket. E.g. {[(<.

rbrac Right bracket. E.g. }])>.

word Token consists of only letters.
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long Long word. The default length for a long word is 6.

allupper Token consists of all upper case characters.

alllower Token consists of all lower case characters.

capitalized First character of the token is capitalized.

num Token is numeric.

xdigitnum The number of digits in a numeric token.x can take values 1-4. E.g.

1digitnum, 2digitnum.

snum Short number. A number consisting of one or two digits.

schar Single character.

lettersanddigits Token contains both letters and digits.

C.5 Chunk Features

NPs Start of a noun-phrase.

NPi Token occurs inside a noun-phrase.

NPe End of a noun-phrase.

VPs Start of a verb-phrase.

VPi Token occurs inside a noun-phrase.

VPe End of a verb-phrase.

C.6 ERC Features

person Matches gazetteer sequences that are patterns for a person name. E.g.

title-firstname-lastname

time Matches gazetteer and orthographic sequences that are patterns for times.

E.g. 1digitnum-punc-2digitnum-ampm

134



C.7 Pair features

We create a pair feature for each pair of features in the POS, gazetteer, ortho-

graphic, chunk and ERC features. E.g. Token is firstname and capitalized.
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Appendix D

Informative Features

This chapter lists informative features for the start and end classifiers of each field

in the three benchmark datasets. For each field, we list the ten most informative

features, as ranked by Information Gain, for a single run of ELIE using a 50:50

split. So for each field, the features listed were the 10 most informative features

chosen by the model based on 50% of the training data. This gives us an idea of

which features and which kinds of features are informative for the various fields.

The features are formatted as TYPE_VALUE_POSITION. TYPE isone of

Tok (Tok), G (gazetteer), T (orthographic), POS (part-of-speech), C (chunk) or

E (entities). POSITION can have value -4 to 4 indication the occurrence of the

feature in relation to the current Tok. For example, G_personfirst_-1 indicates that

the token before the current one was tagged as a first-name by the gazetteer.
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D.1 Seminar Announcements

speaker stime

start end start end

1 E_person_1 G_personlast_0T_1digitnum_0E_time_-1

2 E_person_0 E_person_-1 T_2digitnum_2 E_time_0

3 G_personfirst_0 E_person_0 T_snum_0 E_time_-2

4 G_personlast_1G_personfirst_-1 E_time_1 G_ampm_0

5 POS_NNP_0 POS_NNP_0 E_time_0 G_time_0

6 T_capitalized_0T_capitalized_0 T_num_0 Tok_pm_0

7 C_NPs_0 C_NPe_0 E_time_2 Tok_:_3

8 C_NPe_0 POS_NNP_-1 Tok_:_1 Tok_:_1

9 POS_NNP_1 C_NPs_-1 Tok_time_-2 E_time_-3

10T_capitalized_1T_capitalized_-1 T_snum_2 T_snum_-3

etime location

start end start end

1 Tok_-_-1 Tok_-_-4 Tok_place_-2 T_4digitnum_0

2 T_1digitnum_0 G_time_0 Tok_hall_1 POS_NNP_-1

3 T_2digitnum_2 G_ampm_0 POS_NNP_0T_captialized_-1

4 E_time_0 Tok_pm_0 E_time_-4 Tok_\n_1

5 E_time_1 E_time_-1 Tok_wean_0 T_special_1

6 G_ampm_3 E_time_-2 T_4digitnum_1 Tok_hall_0

7 G_time_3 E_time_0 G_time_-4 T_num_0

8 Tok_pm_3 T_1digitnum_-3 G_ampm_-4 Tok_weh_-1

9 T_snum_0 Tok_00_-1 Tok_weh_0 Tok_hall_-1

10 Tok_:_1 E_time_-3 Tok_:_-1 Tok_5409_0
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D.2 Job Postings

id title

start end start end

1 Tok_<_-1 Tok_>_1 POS_NNP_0 Tok_programmer_0

2 Tok_message_-3 T_rbrac_1 T_capitalized_0 C_NPe_0

3 T_lbrac_-1 Tok_:_4 T_long_0 POS_NNP_-1

4 Tok_:_-2 Tok_reply-to_3Tok_programmer_0 T_long_0

5 T_special_-4 Tok_nntp_3 C_NPs_0 POS_NNP_0

6 Tok_\n_-4 Tok_\n_2 Tok_austin_-2 T_capitalized_0

7 POS_NNP_-3 T_special_2 T_word_0 Tok_engineer_0

8 T_num_0 Tok_com_0 Tok_title_-2 Tok_developer_0

9 T_num_2 T_capitalized_3 G_city:-2 T_capitalized_-1

10 T_punc_-1 POS_NNP_3 POS_NNP_1 C_NPs_-1

company salary

start end start end

1 POS_NNP_0 Tok_victina_0 Tok_$_1 Tok_$_-2

2 Tok_victina_0 POS_NNP_0 Tok_$_0 Tok_k_0

3 T_allupper_0 T_allupper_0 Tok_to_0 Tok_$_-1

4 Tok_ctg_0 POS_VBZ_1 POS_TO_0 Tok_to_-3

5 Tok_systems_1 Tok_ctg_0 T_symbol_1 POS_TO_-3

6 Tok_\n_-1 Tok_systems_1 Tok_k_3 T_symbol_-2

7 T_special_-1 Tok_alliance_0 T_symbol_1 T_2digitnum_-1

8 Tok_alliance_0 Tok_is_1 T_2digitnum_2 Tok_$_-3

9 T_special_-2 Tok_international_2 Tok_up_-1 Tok_000_0

10 Tok_\n_-2 Tok_\n_-2 Tok_$_4 Tok_sat_4
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recruiter state

start end start end

1 Tok_resource_0Tok_resource_-1 Tok_tx_0 Tok_tx_0

2 POS_NNP_0 Tok_spectrum_0G_location_-2G_location_-2

3 Tok_spectrum_1 POS_NNP_-1 T_allupper_0 T_allupper_0

4 C_NPs_0 POS_NNP_0 Tok_-_-1 Tok_-_1

5 C_NPe_1 T_capitalized_-1POS_NNP_0 POS_NNP_0

6 T_capitalized_0 Tok_quorum_3 G_country_-2G_country_-2

7 POS_NNP_1 Tok_5050_2 Tok_austin_2Tok_austin_2

8 Tok_quorum_4 Tok_dr_4 Tok_us_-2 Tok_us_-2

9 Tok_5050_3 C_NPs_-1 G_city_2 G_city_2

10 T_capitalized_1 C_NPe_0 Tok_-_-1 Tok_-_-1

city country

start end start end

1 G_city_0 G_city_0 G_country_0G_country_0

2 Tok_austin_0 Tok_austin_0 Tok_us_0 Tok_us_0

3 G_location_0 G_personfirst_0G_location_0G_location_0

4 G_personfirst_0G_location_0 POS_PRP_0POS_PRP_0

5 POS_NNP_0 POS_NNP_0 T_allupper_0T_allupper_0

6 T_capitalized_0T_capitalized_0 Tok_tx_2 Tok_tx_2

7 Tok_tx_-2 Tok_tx_-2 Tok_-_1 Tok_-_1

8 T_long_0 T_long_0 Tok_-_3 Tok_-_3

9 Tok_-_-1 Tok_-_-1 Tok_austin_4Tok_austin_4

10 Tok_us_-4 Tok_us_-4 G_city_4 G_city_4
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language platform

start end start end

1 Tok_c_0 Tok_c_-2 POS_NNP_0 POS_NNP_0

2 T_allapper_0 Tok_+_0 Tok_windows_0 Tok_nt_0

3 Tok_+_2 Tok_+-1 Tok_unix_0 Tok_unix_0

4 Tok_+_1 Tok_allupper_0 T_allupper_0 T_allupper_0

5 T_word_0 Tok_c_0 Tok_nt_0 Tok_windows_-1

6 Tok_cobol_0 Tok_,_1 T_word_0 Tok_windows_0

7 Tok_visual_0 POS_NNP_0 T_capitalized_0 Tok_95_0

8 POS_NNP_0T_allupper_-2 T_alllower_0 T_punc_0

9 Tok_+_3 Tok_cobol_0 T_punc_0 T_alllower_0

10 Tok_/_-1 T_symbol_-1 Tok_95_1 T_schar_0

application area

start end start end

1 POS_NNP_0 POS_NNP_0 POS_NNP_0 POS_NNP_0

2 Tok_oracle_0 Tok_oracle_0 Tok_,_-1 T_allupper_0

3 T_allupper_0 T_capitalized_0T_allupper_0 Tok_,_1

4 T_word_0 Tok_db_-1 T_punc_0 T_punc_0

5 T_capitalized_0 T_long_0 T_word_0 T_word_0

6 Tok_db_0 Tok_sysbase_0 Tok_,_1 Tok_,_-1

7 T_long_0 T_punc_0 T_schar_0 Tok_mfc_0

8 Tok_sysbase_0 Tok_,_1 C_NPs_0 T_schar_0

9 Tok_,_-1 T_alllower_1 Tok_mfc_0 T_long_0

10 T_schar_0 T_word_0 C_NPe_1 Tok_client/server_0
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required years exp. desired years exp.

start end start end

1 T_1digitnum_0 Tok_years_1 Tok_years_1 Tok_years_1

2 T_snum_0 T_1digitnum_0 T_snum_0 T_1digitnum_-2

3 T_num_0 T_snum_0 Tok_-_-1 T_snum_0

4 Tok_years_1 POS_NNS_1 T_1digitnum_0 Tok_-_-1

5 Tok_3_0 T_num_0 T_1digitnum_-2 T_1digitnum_0

6 Tok_years_2 Tok_+_0 T_num_0 Tok_5_0

7 Tok_+_1 T_schar_0 Tok_5_0 T_num_0

8 Tok_2_0 Tok_3_0 T_snum_-2 POS_NNS_1

9 T_schar_0 T_1digitnum_-1 POS_VBP_2 T_snum_-2

10 T_symbol_1 Tok_least_-1 Tok_experience_2 POS_VPB_2

required degree desired degree

start end start end

1 T_allupper_0 Tok_degree_1 Tok_msme_0 Tok_b_-3

2 POS_NNP_0 T_allupper_0 Tok_bsme_-2 Tok_bsme_-2

3 Tok_bs_0 Tok_bscs_0 T_allupper_0 Tok_msms_-0

4 Tok_bscs_0 Tok_bs_0 Tok_science_3 Tok_science_3

5 Tok_qualifications_-4Tok_qualifications_-4Tok_preferred_-2Tok_associates_2

6 Tok_bachelor_0 POS_NNP_0 Tok_or_4 Tok_degree_3

7 Tok_s_2 Tok_b_-3 Tok_b_0 Tok_computer_2

8 Tok_degree_1 Tok_science_4 Tok_computer_2 Tok_masters_0

9 Tok_b_0 Tok_ba_0 T_allupper_-2 Tok_s_-1

10 T_word_0 Tok_bsee_0 POS_NNP_0 POS_NNPS_2
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post date

start end

1 G_month_1 G_date_-1

2 G_date_1 G_month_-1

3 Tok_1997_2 Tok_1997_0

4 E_time_3 E_time_4

5 E_time_4 E_time_3

6 Tok_sep_1 E_time_2

7 T_4digitnum_2 E_time_1

8 T_2digitnum_3 Tok_sep_-1

9 T_snum_0 T_4digitnum_0

10 T_snum_3 T_2digitnum_3

D.3 Reuters Corporate Acquisitions

acquired purchaser

start end start end

1 POS_NNP_0 T_capitalized_0 Tok_-_-1 T_capitalized_0

2 T_capitalized_0 POS_NNP_0 T_symbol_-1 POS_NNP_0

3 C_NPs_0 Tok_inc_0 POS_NNP_0 T_capitalized_-1

4 T_capitalized_1T_capitalized_-1 G_date_-3 POS_NNP_-1

5 C_NPi_1 C_NPe_0 G_month_-3 C_NPe_0

6 POS_NNP_1 POS_NNP_-1 T_capitalized_0 Tok_inc_0

7 T_alllower_0 C_NPi_-1 C_NPs_0 Tok_said_1

8 T_capitalized_2 Tok_corp_0 T_capitalized_1 Tok_corp_0

9 T_alllower_1 T_capitalized_-2 T_snum_-2 T_alllower_0

10 POS_NNP_2 POS_NNP_-2 Tok_march_-3 Tok_it_2
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seller acqabr

start end start end

1 POS_NNP_0 POS_NNP_0 POS_NNP_0 POS_NNP_0

2 Tok_-_-1 T_capitalized_0T_capitalized_0T_capitalized_0

3 T_symbol_-1 T_capitalized_-1 T_alllower_0 T_alllower_0

4 G_month_-3 POS_NNP_-1 G_stopword_0G_stopword_0

5 G_date_-3 C_NPe_0 T_allupper_0 T_allupper_0

6 T_capitalized_0 Tok_inc_0 Tok_’_1 Tok_’_1

7 C_NPs_0 Tok_corp_0 T_long_0 T_long_0

8 T_capitalized_1 Tok_said_1 POS_IN_-1 T_word_0

9 POS_NNP_1 T_alllower_0 T_word_0 Tok_s_2

10 T_snum_-2 Tok_it_2 T_schar_0 T_schar_0

purchabr sellerabr

start end start end

1 POS_NNP_0 POS_NNP_0 POS_NNP_0 POS_NNP_0

2 T_alllower_0 T_alllower_0 T_alllower_0 T_alllower_0

3 Tok_reuter_-1T_capitalized_0Tok_reuter_-1 T_allupper_0

4 T_capitalized_0 T_allupper_0 T_allupper_0 Tok_{_1

5 T_allupper_0 G_stopword_0G_personlast_-1 T_lbrac_1

6 G_personlast_-1 Tok_{_1 T_capitalized_0 Tok_}_3

7 G_stopword_0 Tok_reuter_-1 Tok_._-3 T_rbrac_3

8 Tok_._-3 T_lbrac_1 Tok_}_3 T_capitalized_0

9 T_word_0 POS_VBD_1 Tok_{_1 G_stopword_0

10 T_word_-2 Tok_}_3 T_rbrac_3 Tok_reuter_-1
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acqloc dlramt

start end start end

1 T_capitalized_0G_location_0 T_num_0 Tok_dlrs_0

2 G_location_0 T_capitalized_0 Tok_mln_1 Tok_mln_-1

3 POS_NNP_0 G_province_0Tok_undisclosed_0 POS_NNS_0

4 POS_IN_-1 T_alllower_0 T_snum_0 T_num_-2

5 Tok_in_-1 POS_NNP_0 POS_IN_-1 Tok_disclosed_0

6 G_city_0 G_city_0 Tok_for_-1 C_NPs_-1

7 T_alllower_0 Tok_,_1 Tok_dlrs_2 Tok_._1

8 T_long_0 T_punc_1 T_3digitnum_0 C_NPe_0

9 G_stopword_-1G_stopword_0 G_stopword_-1 Tok_undisclosed_0

10 G_province_0 Tok_based_1 Tok_about_-1 Tok_\n_2

status acqbus

start end start end

1 POS_VBN_0 T_alllower_0 POS_NN_0 T_long_0

2 Tok_agreed_0 T_long_0 T_long_0 POS_NNS_0

3 T_long_0 Tok_completed_0G_stopword_0 POS_NN_0

4 T_alllower_0 Tok_agreed_-2 T_alllower_0 C_NPe_0

5 Tok_it_-2 POS_VBN_0 Tok_oil_0 T_alllower_0

6 Tok_completed_0 C_VPe_0 POS_NN_1 G_stopword_0

7 POS_PRP_-2 G_stopword_0 C_NPs_0 T_word_0

8 Tok_has_-1 Tok_acquired_0 T_word_0 C_NPi_-1

9 Tok_it_-1 Tok_principle_0 Tok_and_1 Tok_products_0

10 POS_VBD_0 Tok_agreement_0 C_NPi_1 POS_NN_-1
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Appendix E

Using ELIE

ELIE is a tool for adaptive information extraction. It also provides a number of

other text processing tools e.g. POS tagging, chunking, gazetteer, stemming. It is

written in Python.

E.1 Installation

Requirements:

• Python 2.1 or higher

• Java 2 or higher

• Weka (included in distribution)

• Brilltag (if you intend to use datasets other than those provided)

Unzip the ELIE archive. Edit thebasedir, BRILLTAGPATHandjava variables in

the fileconfig.pyto describe your own system. Add$ELIEHOME/lib/weka.jarto

your java classpath.

E.2 Usage

ELIE contains the following executable files

evaluation.py The main way to run ELIE.
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scorer.py Calculate performance measures from ELIE logs.

extractor.py Performs basic learning and extraction.

preprocessCorpus.pyPreprocesses a corpus of text files.

tagging.py Does POS, chunking etc. on a text file.

You can execute these files without any arguments to get usageinformation.

E.2.1 Input Format

Documents should be stored in text files with one document pertext-file. Fields

should be marked using the syntax<field> ... </field>.

E.2.2 Preprocessing

This stage adds tokenization, orthographic, POS, chunkingand gazetteer informa-

tion to the input files and stores it using ELIE’s own format. This stage only needs

to be done once for each document collection. Running

preprocessCorpus.py datasetDirectory

will create a new directory calleddatasetDirectory.preprocessedwhich contains

all the files in ELIE’s internal format. Note the input files shouldn’t contain any

unusual control characters and for every <field> there must be a corresponding

</field>.

E.2.3 Running ELIE

The recommended way to run ELIE is using the fileevaluation.py. It takes the

following parameters.

-f field

A list of the fields to be extracted surrounded by quotes e.g. “speaker stime etime

location”

-t trainCorpusDirectory
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The directory that contains the pre-processed corpus.

-D dataDirectory

The directory to save ELIE’s output and temporary files in.

[-T testCorpusDirectory]

Optionally specify a directory that contains the pre-processed test corpus. If no

test corpus is specified ELIE will do a random split of the training corpus.

[-s splitfilebase]

Specify a set of pre-defined splits for the training data.

If -t and -T are are set, then ELIE will train on trainCorpusDirectory and test

on testCorpusDirectory. Otherwise it will do repeated random splits on trainCor-

pusDirectory. Other options include:

-p set train proportion

For a random split experiment set the proportion of the data to use for training.

The default value is 0.5.

-n number of trials

For a random split experiment set the number of trials. The default value is 10.

-v version info

-h help

The corpora directories should contain preprocessed files only i.e. those created

by preprocessCorpus.py. The dataDirectory is where ELIE will store all its inter-

mediate and output files. The splitfilebase argument can usedbe for predefined

splits.
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E.3 Output

The detail of ELIE’s printed output is controlled using the parameterconfig.verbosity.

ELIE produces several logfiles that can be used by the bwi-scorer or ELIE’s

own scorer (scorer.py). The logfile names have formname.field.elie.number.level.log.

The split files name has the formelie.field.number.split. Each split-file lists the

name of each training file, one per line, followed by a separator, followed by the

name of each test file, one per line.

These are located in the specified dataDirectory. For a random split experiment

ELIE will produce a split file for each iteration. Each split file lists the files used

for training and testing. To use pre-defined splits, pass thebase of the splitfiles

using the -s option.

E.4 Configuration

The file config.pycontains all the configuration options. In this section we de-

scribe these parameters and their default values.

The config.py file contains several constants that ELIE uses.

basedir = ’/home/aidan/IE/Elie5’

This is the full path to the directory where ELIE is installed

BRILLTAGPATH=’/usr/Brilltag/Bin_and_Data/tagger’

This is the full path to the Brilltag tagger binary.

verbosity = 2

This controls the level of output that ELIE produces. Highernumbers produce

more output. It takes values 0 to 5.

java = ‘java -mx1900000000 -oss1900000000 ’

148



This is the command to call the java runtime. You can add any java parameters

here. It is a good idea to allocate plenty of memory to the javainterpreter.

use_psyco = 0

This can have values 0 or 1. Psyco is a program for dynamicallycompiling python

scripts for improved execution time. Enabling psyco will make ELIE run faster

but will use a lot more memory. On large experiments this doesn’t give much

improvement as most of the time is spent inside WEKA.

learner = ’SMO’

This setting controls which learning algorithm is used. SMOis the default. Avail-

able options are: ‘knn’, ‘m5’, ‘kstar’, ‘hyper’, ‘m5rules’, ‘j48’, ‘OneR’, ‘neural’,

‘winnow’, ‘LMT’, ‘jrip’, ‘SMO’, ‘prism’, ‘PART’, ‘ridor’, ‘bayes’.

The punctuation, symbols, lbrackets, rbrackets, quotes, longword, usable_tags,

reserved_characters and special_tokens parameters are constants that control the

behavior of the tokenizer and preprocessor. In general theyshouldn’t be changed.

The following options control ELIE’s behavior. These are the only options that

the user needs to change after installation.

window = 4

This controls the number of tokens for which relation information before and after

the current token is encoded.

m_window = 10

This controls the length of the L2 window: How many instancesbefore and end

and after a start to use for training.

stem = 0

suffix = 0
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Whether to use the token stems and token suffixes as features.

token = 1

pos = 1

types = 1

gaz = 1

chunk = 1

erc = 1

These control which feature-sets to use. Set a value to 0 to disable using those

features.

filter_n_attributes = 5000

This controls how many attributes to use for learning. We canset it to use the top

n features as ranked by Information Gain.

filter_threshold = 0

We can set a threshold here for attribute filtering. E.g. setting this to 0.1 would

mean that we use the top 10% of attributes as ranked by Information Gain.

undersample = 0

This controls whether to use random undersampling of instances. Setting it to 0.8

would randomly delete 80% of the negative instances

prune_instances = 0

This controls whether to prune uninformative instances. Setting it to 80 would

prune 80% of the instances as ranked by the informativeness of the word token.
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E.5 Examples

ELIE takes input documents that are in its own format. This formatadds the

gazetteer, POS, orthographic features etc. To translate a corpus into this format

we use the preprocessCorpus.py command.

preprocessCorpus.py ./train

This creates a new directory called ./train.preprocessed which contains processed

versions of all the files that were in ./train. This only needsto be done once per

corpus.

evaluation.py -t ./train.preprocessed -T ./test.preprocessed

-D ./tmp -f ‘speaker stime etime location’

This command does a single train-test run using the files in train.preprocessed for

training and the files in test.preprocessed for testing. Thelog files are stored in

./tmp. Four fields are extracted: speaker, stime, etime, location.

evaluation.py -t ./train.preprocessed -D ./results

-n 1 -p 0.8 -f ‘speaker stime etime location’

This does a single random test/train split. The files in train.preprocessed are ran-

domly assigned to the train or test set with 80% of them assigned to the train set

and 20% to the test set. The log files and the split files are stored in ./results

evaluation.py -t ./train.preprocessed -D ./tmp

-s ./tmp/elie.speaker. -f ‘speaker stime etime location’

In this example we use the -s option to tell Elie to use predefined train-test splits.

The split files define which files from ./train.preprocessed are allocated to the train

and test sets. The -s option takes the base of the splitfile name. Splitfile names

end in .split and should be formated as elie.field.splitnumber.split so the above

example matches all files that match./tmp/elie.speaker.*.split

evaluation.py -t ./train.preprocessed -D ./tmp

-s ./tmp/elie.speaker.[1-5] -f ‘speaker stime etime location’
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We can also add regular expressions to the splitfile base. Theabove example

matches splitfiles where the base is elie.speaker. and the split number starts with

1, 2, 3, 4 or 5.

After running the above experiment all the log files will be stored in ./tmp.

Once the experiment is complete we can use scorer.py to examine the perfor-

mance. To view the L1 performance we issue the command:

scorer.py ./tmp/elie.speaker.*.elie.L1.log

To view the L2 performance we would use the following command:

scorer.py ./tmp/elie.speaker.*.elie.L2.log
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