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Abstract

The need for labeled documents is a key bottleneck
in adaptive information extraction. One way to solve
this problem is through active learning algorithms that
require users to label only the most informative doc-
uments. We investigate several document selection
strategies that are particularly relevant to information
extraction. We show that some strategies are biased to-
ward recall, while others are biased toward precision,
but it is difficult to ensure both high recall and preci-
sion. We also show that there is plenty of scope for
improved selection strategies, and investigate the rela-
tionship between the documents selected and the rela-
tive performance between two strategies.

1 Introduction

Information extraction (IE) is the process of identifying
a set of pre-defined relevant items in text documents.
For example, an IE system might convert free text re-
sumes into a structured form for insertion in a relational
database. Numerous machine learning (ML) algorithms
have been developed that promise to eliminate the need
for hand-crafted extraction rules. Instead, users are
asked to annotate a set of training documents selected
from a large collection of unlabeled documents. From
these annotated documents, an IE learning algorithm
generalizes a set of rules that can be used to extract
items from unseen documents.

It is not feasible for users to annotate large numbers
of documents. IE researchers have therefore investi-
gated active learning (AL) techniques to automatically
identify documents for the user to annotate [13, 12, 3].

The essence of AL is a strategy for selecting the next
document to be presented to the user for annotation.
The selected documents should be those that will max-

imize the future performance of the learned extraction
rules. Document selection algorithms attempt to find re-
gions of the instance space that have not yet been sam-
pled in order to select the most informative example for
human annotation. The nature of IE means that, com-
pared to text classification, it becomes even more im-
portant to employ AL techniques. Documents are more
expensive to mark-up for IE as rather than being a mem-
ber of a single class, a document may contain several
examples of fields to be extracted.

Several selection strategies have been studied in the
more general context of machine learning. For exam-
ple, confidence-based approaches select for annotation
the unlabeled instance of which the learner is least con-
fident. While such techniques are clearly applicable to
IE, we focus on novel selection algorithms that exploit
the fact that the training data in question is text.

AL in the context of IE is problematic, but also offers
new opportunities. It is problematic in that generic ap-
proaches require feature encoding of all instances. But
for LP

�

[2] and other IE systems, we need to know the
details of how the learning algorithm represents a docu-
ment to compute those features. This does not facilitate
completely learner-independent selection strategies.

IE also offers new opportunities for AL. Because the
objects in question are text, this can give rise to the pos-
sibility of using selection strategies that don’t necessar-
ily make sense in a ‘generic’ ML setting. For example,
one of our strategies selects documents according to the
frequency of common personal names.

In this paper, we investigate several selection strate-
gies and their application to IE (Sec. 3). We show that
different strategies offer a trade-off between precision
or recall (Sec. 4). Some strategies improve recall at the
expense of precision, while others improve precision
at the expense of recall. We also estimate the optimal
performance of an IE algorithm and show that there is
plenty of scope for improving existing selection strate-



gies.
Furthermore, we show that the difference in perfor-

mance between two selection strategies can be (weakly)
predicted from the correlation between the documents
they select (Sec. 5).

2 Related work

There has been a large amount of work on adaptive
information extraction, e.g. [2, 1, 9] and many oth-
ers. These algorithms generally perform well, but all
have the potential for further improvement through ac-
tive learning techniques.

Active learning refers to a variety of ways that a
learning algorithm can control the training data over
which it generalizes. For example, a learner might con-
struct synthetic instances and ask the user to label them.
We focus on so-called selective-sampling strategies [5],
in which the learner picks an instance for the user to
label from a large pool of unlabeled instances.

Selective sampling techniques are generally regarded
as being of two types: confidence- or certainty-based
[10], or committee-based [6]. In each case, the learner
has built a model using a certain number of labeled
training documents, and must select the next document
to be labeled with the goal of choosing the document
that will give the maximum information.

In confidence-based approaches, the learner exam-
ines unlabeled examples and attaches a confidence (usu-
ally based on the certainty with which a prediction can
be made about the document) to them. Documents with
low confidence are chosen to be labeled. Typically,
methods for estimating certainty are based on the prob-
ability that the learner will classify a new example cor-
rectly.

In committee-based approaches, a committee of
learners is constructed and each member attempts to
label unlabeled documents. Documents that maximize
disagreement between committee members are chosen
for labeling. In fact, committee-based approaches can
be regarded as confidence-based, where the confidence
in a prediction is based on the agreement among com-
mittee members about that prediction.

There has been some work in the application of ac-
tive learning to IE (e.g. [13, 11, 12]). [12] use learning-
algorithm-specific heuristics to choose the next docu-
ment for annotation. Specifically, their AL algorithm
for learning Hidden Markov Models (HMM) identifies
“difficult” unlabeled tokens and asks the user to la-

bel them. Difficulty is estimated by the difference be-
tween the most likely and second most likely state of
the HMM.

Other applications of AL and IE do not rely on a spe-
cific learning algorithm. [13] use certainty-based sam-
pling, where the certainty of an extracted field is the
minimum of the training-set accuracies of the rules that
extracted the fragment. [11] describe a multi-view ap-
proach to IE. Multi-view AL is a committee-based ap-
proach in which the committee members are formed by
training on different sets of features. Muslea et al. learn
two different models for extraction based on two differ-
ent views of the data, and select the document where
both models disagree, but are most confident in their
predictions.

3 Selection strategies

3.1 Notation and terminology

The aim of an active learning selection strategy is to
select documents in a way that improves performance
over random selection. A selection strategy should se-
lect the document for labeling that is most informative.
The difficulty is estimating how informative a document
will be without knowing the labels associated with that
document or the features that will represent the docu-
ment. We have identified two main approaches to esti-
mating the informativeness of a document: confidence-
based and distance-based.

Confidence-based. The first approach is to try to di-
rectly estimate the informativeness of a document �
using some measure of uncertainty

��� ��� . From infor-
mation theory, the amount of information gained from
labeling a document is equal to the uncertainty about
that document before labeling it [10]. Most learn-
ing learning algorithms support some method of esti-
mating confidence on unseen documents. For exam-
ple, one can invoke a set of learned rules on a doc-
ument, and then compute a confidence for the docu-
ment based on the training-set accuracies of the rules
that apply to that document. Other types of approaches
such as multi-view and committee-based can also be
regarded as confidence-based. Multi-view approaches
estimate uncertainty using using some measure of dis-
agreement between models built using different views,
while committee-based approaches estimate the confi-
dence using agreement between committee members.



Given some confidence measure
�

and a pool of unla-
beled documents � , a confidence-based selection strat-
egy will pick the unlabeled document � that minimizes
this measure:

���������
	���
������� ��� ��� �
Distance-based. The second approach is based on the
idea that for any set of instances, there is (by defini-
tion) some set of documents � that optimizes perfor-
mance over the unselected documents. Furthermore,
one can assume that � can be generated from some
distance metric ��� � ��� � � � over documents, by select-
ing the � ��� documents that maximize the pair-wise dis-
tance between the members of � . For example, if the
learning algorithm is a covering algorithm, then perfor-
mance should be maximized with a sample that cov-
ers the instance space uniformly. So the second ap-
proach is to define some distance metric � � ��� � � � that
closely approximates ��� � ��� � � � , and then sampling uni-
formly from that space. Rather than trying to find doc-
uments that we have low confidence in, we are trying to
find documents that are different to those already seen.
Specifically, given some distance metric � � ��� � � � , a set
of previously selected documents  , and a pool of un-
labeled data � , a distance-based selection strategy will
pick the unlabeled document � that maximizes the dis-
tance from � to the members of  :

���!�����"	��$#� � ���
%
� � � �'& �

� � � � � � � �
Of course, distance-based approaches can also be
thought of as confidence-based where confidence is
estimated as distance from previously seen instances.
This is a less direct measure of confidence than other
approaches so we feel that it warrants separate catego-
rization.

3.2 The strategies

We introduce several novel AL document selection
strategies for IE. Some of the strategies are applica-
ble only in an IE or text classification context. While
they are tailored for IE, they are generic in that they
do not assume any specific IE algorithm. The learning
algorithm that we use is LP

�

[2] but the active learn-
ing strategies that we investigate are not particular to
our choice of learning algorithm and so we could eas-
ily substitute another IE algorithm such as BWI [9] or
Rapier [1].

COMPARE. This strategy selects for annotation the
document that is textually least similar to the documents
that have already been annotated. We select the docu-
ment that is textually most dissimilar to the documents
already in the corpus. The idea is to sample uniformly
from the document space, using the notion of textual
similarity to approximate a uniform distribution. This
is a distance-based selection strategy. Similarity can be
measured in various ways, such as raw term overlap, or
using TFIDF weighting but our distance metric � � ��� � � �
is the inverse of the number of words that occur in both
� and � � divided by the number of words that occur
in � or � � . Note that COMPARE is very fast, because
the learning algorithm does not need to be invoked on
the previously-selected documents in order to select the
next document.

EXTRACTCOMPARE. This strategy selects for anno-
tation the document where what is extracted from the
document is textually most dissimilar to the documents
in the training corpus. This is similar to Compare, ex-
cept that the distance metric is � � ���)( �+*-,/.102* � � � � � , where( �+*-,$.�03* � � � � applies the learned extraction rules to the
document � � . The idea here is to select documents that
don’t contain text that we are already able to extract.
EXTRACTCOMPARE is quite slow, because the learning
algorithm must be invoked on the previously-selected
documents in order to select the next document.

MELITA [4]. MELITA selects for annotation the doc-
ument that matches the fewest patterns that the learning
algorithm has learned from the training corpus. This is
a confidence based metric.

��� � �546� ( �+*-,/.102* � ���7� . This
approach is similar to EXTRACTCOMPARE. It selects
documents that do not match patterns that we have al-
ready learned. Like EXTRACTCOMPARE, MELITA is
quite slow. Note that MELITA is essentially a special
case of the approach described in [13] in that the confi-
dences of the extracted items are ignored.

NAMEFREQ. Often the items to be extracted are peo-
ple’s names, but these can be difficult to extract, be-
cause they are likely to be words that the learner has
not seen before. NAMEFREQ selects for annotation
the document with the most unusual personal names.
Specifically, NAMEFREQ assigns a part of speech tag
to each term in document � , and then uses

��� ���849/:";=< �>�@? �BA � , where
ADC � iterates over the proper

nouns in document � , and ? �BA � is the frequency of



proper noun
A

as a personal name according to recent
US Census data. We assume that the learner is less con-
fident about names that are unusual as it is less likely to
have seen these names before. Like COMPARE, NAME-
FREQ is very fast.

BAG. Bagging is a standard approach in machine
learning. We apply it to IE by invoking the learning
algorithm on different partitions of the available train-
ing data and selecting the document that maximizes dis-
agreement between the models built on different parti-
tions of the training data. The training set is divided into
two partitions and a model built using each as it’s train-
ing set. The document is selected where the two learn-
ers extract the most dissimilar text. This is a committee-
based strategy (and thus confidence-based), where the
members of the committee comprise learners built on
different partitions of the training data. The confidence
of prediction is estimated based on agreement between
the two learned models. BAG is very slow.

ENSEMBLE. It is common in machine learning to
use the combined predictions of different learning al-
gorithms to improve performance. We can similarly
with IE seek to combine selections of different selection
strategies to improve learning rate. This approach is
an ensemble learner based on the MELITA and NAME-
FREQ strategies. It selects half of those documents that
NAMEFREQ would pick and half of those that MELITA

would pick. This strategy was designed after examina-
tion of the performance of the other selection strategies.
The aim to to try to simultaneously maximize both pre-
cision and recall. ENSEMBLE is quite slow.

4 Experiments

We have evaluated our selection algorithms on two in-
formation extraction tasks, and report our results in the
form of the learning curve for each selection strategy.

Each learning curve was averaged over ten runs.
Documents are added to the training-set in batches of
size 10. For each selection strategy, the first 10 docu-
ments are picked at random, while subsequent batches
are chosen according to the selection strategy. Each
point on the learning curve shows the accuracy of the
learning algorithm when trained on the selected docu-
ments and tested on the rest.

We compare our results to two baselines: a trivial
strategy that selects documents randomly, and an “om-

niscient” optimal strategy. Because finding the true op-
timal is combinatorially prohibitive, we use a greedy
estimate of the optimal (at each step, the greedy algo-
rithms selects the one document that will result in the
largest increase in performance). That is, the optimal
selection � given a set of previously selected documents and a pool � of unlabelled documents with respect to
some measure � (eg, precision, recall or F1) is

��������� 	���#� � ��� � �  ���� � ��� ���
We include this data as an estimate of the upper bound
on the performance of any selection strategy. Finally,
because even the greedy implementation requires a
large amount of CPU time, we report the optimal re-
sults for just a small number of documents.

4.1 Seminar announcements

The SA dataset consists of 473 seminar announcements
[7]. For each document we wish to extract the speaker,
location, start-time and end-time.

Fig. 1 shows the learning curves for F1, precision and
recall generated on this dataset. Looking at F1 shows
that random selection is one of the better strategies. In
fact only MELITA and COMPARE perform better than
the random selection strategy on this extraction task, but
the difference is small. However, recall that COMPARE

is much faster than MELITA, so COMPARE is more suit-
able for the interactive scenarios that motivate MELITA

[4]. NAMEFREQ performs considerably worse that the
other selection strategies.

If we look at precision and recall separately, we get
a clearer picture of the performance of each strategy.
MELITA performs best when recall is considered fol-
lowed by COMPARE and EXTRACTCOMPARE. All of
these are significantly better than random. NAMEFREQ

is the worst performer.
If we look at the precision learning curve, this trend

is reversed. NAMEFREQ gives the highest precision,
while MELITA and EXTRACTCOMPARE give the worst
precision. COMPARE gives slightly better precision
than random and better recall than random.

On this task, NAMEFREQ gives the best improvement
in precision, while it is the worst when recall is consid-
ered. Conversely MELITA offers the best improvement
in recall, but performs worst when precision is consid-
ered.

Each strategy seems to bias toward either improving
precision or improving recall. Some strategies can be
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Figure 1: Learning curves for the SA dataset.

used to improve recall performance, while others can be
used to improve precision performance. Other strate-
gies that perform closer to random don’t offer signifi-
cant improvements in either precision or recall.

4.2 Reuters acquisitions articles

The ACQ dataset consists of 300 Reuters articles de-
scribing corporate acquisitions [8]. The task is to ex-
tract the name of the purchasing and acquired compa-
nies.

Fig. 2 shows the learning curves for the various se-
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Figure 2: Learning curve for the ACQ dataset.

lection strategies on this dataset. In this case, the re-
sults are somewhat more clear cut. When looking at
F1, MELITA and EXTRACTCOMPARE are significantly
better than the other strategies. NAMEFREQ is again
the worst. On this task, the difference in recall perfor-
mance is large enough to be reflected as a large differ-
ence in the F1 performance. The boost in recall us-
ing these strategies is greater than the resulting drop
in precision. As on the SA dataset, when precision is
considered, NAMEFREQ performs best, with MELITA

and EXTRACTCOMPARE performing worst. The rela-
tive performance of the selection strategies is reversed
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KEY CENTURION {KEYC} COMPLETES ACQUISITIONS
CHARLESTON, W.Va., April 2 - Key Centurion Bancshares Inc said it has
completed the previously-announced acquisitions of Union Bancorp of West
Virginia Inc and Wayne Bancorp Inc.
Reuter
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Aiding Performance in Complex Dynamic Worlds:
Some HCI Challenges

Emilie Roth
Information Technology Dept.

Westinghouse Science and Technology Center

We have been studying crew problem-solving and decision-making in
simulated power plant emergencies with the objective of developing the
next generation computerized control room. Power plant control rooms
offer some unique challenges to HCI. Because they are complex ...
------------------------------------------------------------------------

Figure 3: The most-informative ACQ (top) and SA
(bottom) documents.

when we consider precision instead of recall. The two
strategies that perform best when recall is considered
are those that perform worst when precision is consid-
ered.

Again this indicates that the various strategies are
suited to optimizing either precision or recall. Given
this trend, we investigate whether selecting documents
according to both kinds of strategy will improve both
precision and recall. The ensemble selection strategy
selects documents according to both MELITA (improves
recall) and NAMEFREQ (improves precision). This ap-
proach performs slightly better than random for both
precision and recall, but not as well as NAMEFREQ for
precision or MELITA for recall.

4.3 Discussion

For each task, we have shown the first few points of the
optimal learning curve. On each task, the optimal curve
is several times better than the best selection strategy in
the early stages of learning. This indicates that there is
plenty of scope for improved selection strategies. In-
deed the optimal curve shows that the choice of initial
training documents can lead to very good performance.
For example, on the SA dataset there is a single docu-
ment (see Fig. 3) that when the learner is trained on, it
performs with F1 of 24.25% on the rest of the training
corpus. On the ACQ dataset, there is a single document
that gives an F-score of 21.5%. On the SA dataset, best
performing strategy (MELITA) requires 130 documents
to achieve the same performance as the optimal after 20
documents. On the ACQ dataset, MELITA requires 130
documents to achieve the same F1 performance as the

optimal strategy after 30 documents. For recall, it re-
quires 190 documents to achieve the same performance
as the optimal recall strategy. Even after 200 documents
it does not reach the level of performance of the optimal
precision curve. This indicates that there are a small
number of highly informative examples in the dataset,
while all the other documents contribute only very small
incremental increases in performance.

There is clear trade-off between optimizing preci-
sion, recall or F1. Fig. 4 shows the learning curves
when optimizing for F1, precision and recall respec-
tively for the ACQ dataset. The optimal precision curve
results in low recall, and vice-versa. This trend is to be
expected, but Fig. 4 shows that the trade-off is not com-
plete. While we can maximize precision at 100% if we
are prepared to accept very low recall, the optimal re-
call curve is much lower. We cannot achieve very high
recall, even if we are prepared to accept very low preci-
sion. We conjecture that this is because, as a covering
algorithm, LP

�

is inherently biased to favor precision
over recall.

The choice of strategy depends on whether we wish
to optimize for precision or recall. We have shown that
some strategies perform better than random at improv-
ing precision, while others perform better at improving
recall.

Given that MELITA improves recall and NAMEFREQ

improves precision, we attempted to improve both by
combining both approaches. However this ENSEMBLE

approach does not perform as well as either approach.

5 Predicting performance

The previous experiments concerned the relative per-
formance of the selection strategies. From a practical
perspective, it is important to be able to predict which
strategy will perform best, without having to actually
try the strategies and measure the results. We now turn
to some preliminary results that address this issue.

In order to predict the relative performance of the dif-
ferent selection strategies, we need to find some infor-
mative property of the strategies that can be measured
without knowing the labels of the unlabeled data. We
have used the the correlation between the documents
selected by each strategy. Our hypothesis is that if two
strategies tend to select the same documents, then they
will have similar performance, while if two strategies
select very different documents, then there will be a
large performance gap between the two. Our ultimate
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Figure 4: Optimal learning curves for F1, precision and recall on the ACQ dataset.

goal is to derive such a relationship analytically. We
now consider empirical evidence that partially supports
this hypothesis.

To measure the degree of agreement between two
strategies, we first randomly select 50 documents.
Then, in batches of 10, we selected the remaining docu-
ments using each selection strategy. This was repeated
10 times and the average Spearman rank correlation co-
efficient calculated for each pair of strategies. Strategies
that select documents in the same order have a correla-
tion of � 1, while strategies that select documents in the
opposite order have a correlation of � 1.

On both tasks, there is a strong positive correlation
between EXTRACTCOMPARE and MELITA, indicating
that they both tend to pick the same documents. There
is also a positive correlation between ENSEMBLE and
MELITA and NAMEFREQ. This is expected as ENSEM-
BLE combines these two strategies.

On the SA task, there is quite a strong negative cor-
relation between NAMEFREQ and MELITA. There is a
slight negative correlation between these strategies on
the ACQ dataset. This indicates that these strategies
tend to select different documents.

To determine whether selection agreement is useful
for predicting relative performance, we then measured
the performance gap between the strategies. We define
gap

� ����� � as the normalized performance difference, av-
eraged over all points on the learning curve from 50 to
200 documents.

Fig. 5 shows the selection agreement between various
selection strategy pairs plotted against the gap in perfor-
mance between the strategies. We display SA and ACQ
in different plots, and we measure the gap in precision,
recall and F1. Anecdotally, it is apparent that our ability
to predict the performance gap is quite good for strate-
gies that are highly correlated (either positively or neg-
atively), but rather poor when the strategies are weakly
correlated.

More precisely, our hypothesis that selection agree-

ment can be used to predict performance gap is vali-
dated to the extent that these data have a correlation of
� 1. Fig. 6 shows the six correlations. As anticipated,
all of the correlations are negative, though weakly so.
Our approach is slightly better at predicting the perfor-
mance gap for SA compared to ACQ, and for predicting
the recall gap compared to precision and F1.

6 Conclusion

We have investigated several Active Learning selection
strategies that can be applied to Information Extrac-
tion. Of these, several performed significantly better
than a random selection strategy. MELITA and EX-
TRACTCOMPARE offer improved recall over random
selection with a resulting drop in precision. NAME-
FREQ offers improved precision at the expense of re-
call. Some strategies offer improvements in recall while
others improve precision, but it is difficult to get signif-
icant improvement in both recall and precision. Most
importantly, there is still however a significant differ-
ence in performance between the optimal curve and the
various selection strategies. Existing selection strate-
gies still have significant scope for improvement.

Our immediate future work involves identifying
strategies that bridge the wide gap between the opti-
mal strategy and the strategies we have investigated so
far. For example, we are exploring a committee-based
strategy called DUAL that has two committee members
for each field: one that extracts the field itself, and one
that extracts all document fragments except the particu-
lar field. We are also conducting a detailed analysis of
the optimal documents to determine strategies that can
bridge the gap.

A second goal is to improve our ability to predict the
performance gap between two strategies. Ultimately,
we seek a theoretically-grounded model of active learn-
ing that will enable us to derive upper or lower bounds
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Figure 5: Performance gap vs. selection correlation.

F1 P R mean
SA -0.27 -0.32 -0.43 -0.34

ACQ -0.22 -0.25 -0.23 -0.23
mean -0.25 -0.29 -0.33

Figure 6: The correlation between two strategies’ per-
formance gap and the degree to which they select the
same documents.

on the performance of a given strategy.
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