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Abstract. We investigate the application of classification techniques to the prob-
lem of information extraction (IE). In particular we use support vector machines
and several different feature-sets to build a set of classifiers for IE. We show
that this approach is competitive with current state-of-the-art IE algorithms based
on specialized learning algorithms. We also introduce a newtechnique for im-
proving the recall of our IE algorithm. This approach uses a two-level ensemble
of classifiers to improve the recall of the extracted fragments while maintaining
high precision. We show that this approach outperforms current state-of-the-art
IE algorithms on several benchmark IE tasks.

1 Introduction

Information extraction (IE) is the process of identifying aset of pre-defined relevant
items in text documents. Numerous IE algorithms based on machine learning techniques
have been proposed recently. Many of these algorithms are “monolithic” in the sense
that there is no clean separation between the learning algorithm and the features used
for learning. Furthermore, many of the proposed algorithmseffectively reinvent some
aspects of machine learning, using their own specialized learning algorithms, rather
than exploit existing machine learning algorithms.

In this paper, we investigate how relatively “standard” machine learning techniques
can be applied to information extraction. We adopt the standard “IE as classification”
formalization [6, 3], in which IE becomes the task of classifying every document posi-
tion as either the start of a field to extract, the end of a field,or neither. We investigate
how different feature-sets contribute to the performance of our algorithm. We show that
this approach with support vector machine classification iscompetitive and in many
cases superior to current state of the art approaches based on algorithms crafted specif-
ically for IE.

Based on these initial results, we then describe improvements on this basic approach
that give superior performance on a variety of benchmark IE tasks. Our enhancements—
which we call multi-level boundary classification—consistof combining the predictions
of two sets of classifiers, one set with high precision and onewith high recall.

The intuition behind this approach is as follows. Our systemconsists of two sets of
classifiers (L1 and L2). The L1 classifiers adopt the the standard “IE as classification”
approach. L2 uses a second level of “biased” classifiers. To extract a fragment we need



to identify both its start and end. If the L1 classifier predicts one end of the fragment (ei-
ther the start or the end, but not both) we assume that it is correct. We use this prediction
as a guide to the L2 classifier to identify the complete fragment (see Fig. 1).
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Fig. 1. L1 and L2: An example

We make two contributions. First, we show that the use of an off-the-shelf sup-
port vector machine implementation is competitive with current IE algorithms based
on specialized learning algorithms. Second, and more significant, we introduce a novel
multi-level boundary classification approach, and demonstrate that this new approach
outperforms current IE algorithms on a variety of benchmarktasks.

2 Prior research

We begin with a discussion and comparison of some of the more prominent adaptive IE
algorithms.

RAPIER [2] uses inductive logic programming techniques to discover rules for ex-
tracting fields from documents. It does not try to identify start and end tags separately,
but learns to identify relevant strings in their entirety. RAPIER performs specific-to-
general bottom-up search by starting with the most specific rule for each positive train-
ing example and repeatedly trying to generalize these rulesto cover more positive ex-
amples. RAPIER uses as its features the tokens, part-of-speech information and some
semantic class information.

BWI [6] learns a large number of simple wrapper patterns, andcombines them us-
ing boosting. BWI learns separate models for identifying start and end tags and then
uses a histogram of training fragment lengths to estimate the accuracy of pairing a given



start and end tag. BWI learns to identify start and end tags using a form of specific-to-
general search. BWI’s features consist of the actual tokens, supplemented by a number
of orthographic generalizations (alphabetic, capitalized, alphanumeric, lower-case, nu-
meric, punctuation), as well as a modest amount of lexical knowledge (a list of first and
last names).

LP2 [3] learns symbolic rules for identifying start and end tags. Like BWI, it iden-
tifies the starts and ends of fields separately. In addition totoken and orthographic fea-
tures, LP2 uses some shallow linguistic information such as morphological and part-
of-speech information. It also uses a user-defined dictionary or gazetteer. Its learning
algorithm is a covering algorithm which starts with specificrules and tries to generalize
them to cover as many positive examples as possible. This process is supplemented by
learning correction rules that shift predicted tags in order to correct some errors that the
learner makes.

SNoW-IE [13]: SNoW [12] is a relational learning algorithm that is specifically tai-
lored towards large scale learning tasks such as IE. SNoW-IEidentifies fragments to
be extracted rather than separately identifying start and end tags. It uses token, ortho-
graphic, POS and semantic features. It learns in two stages.The first stage involves
filtering all the candidate fragments while the second involves picking the correct frag-
ments from those remaining.

BWI uses the fewest features: it uses just the tokens and someorthographic infor-
mation. LP2 ,RAPIER and SNoW-IE supplement these features with part-of-speechand
semantic information.

3 The ELIE algorithm

Information Extraction as classification. We treat tasks with multiple fields as mul-
tiple independent single-field extraction tasks i.e. we only extract one field at a time.
Following [6, 3], we treat the identification of field start and end positions as distinct
token classification tasks. All tokens that begin a labeled field are positive instances for
the start classifier, while all the other tokens become negative instances for this clas-
sifier. Similarly, the positive examples for the end classifier are the last tokens of each
labeled field, and the other instances are negative examples.

Features and encoding.Each instance has a set of features that describe the given to-
ken. The features include the specific token, as well as part-of-speech (POS), chunking,
orthographic and gazetteer information.

Token. The actual token.
POS. The part-of-speech of the token. Each token is tagged with its corresponding

POS using Brill’s POS tagger [1]. We also represent chunkinginformation about
the tokens. The POS tags are grouped into noun-phrases and verb-phrases.

Gaz. The values associated with the token in a gazetteer. The gazetteer is a user-defined
dictionary. It contains lists of first-names and last-namestaken from the U.S. census
bureau, a list of countries and cities, time identifiers (am,pm), titles (Jr., Mr), and
a list of location identifiers used by the U.S. postal service(street, boulevard).



Orthographic. These features give various orthographic information about the token.
Examples of these features include whether the token is upper-case, lower-case,
capitalized, alphabetic, numeric or punctuation.

Encoding all tokens in the dataset in this manner gives a verylarge number of at-
tributes. We therefore filter the attributes according to information gain [11] in order to
discard irrelevant features and reduce learning time.

Relational information is encoded using additional features. To represent an in-
stance, we encode all these features for that particular token. In addition, for a fixed
window size ofw, we add the same features for the previousw tokens and the next
w tokens. For example, if we use a window size of 1, then each instance has a fea-
ture to represent the token for that instance, the token of the preceding instance and the
token of the next instance. Similarly, there are features torepresent the POS, gaz and
orthographic information of the current instance and the previous and next instances.

Learning with E LIE . The ELIE algorithm has two distinct phases. In the first phase,
ELIE simply learns to detect the start and end of fragments to be extracted. Our experi-
ments demonstrate that this first phase generally has high precision but low recall. The
second phase is designed to increase recall. We find that veryoften false negatives are
“almost” extracted (the start but not the end is correctly identified, or the end but not the
start). In the second phase ELIE is trained to detect either the end of a fragment given
its beginning, or the beginning of a fragment given its end.

Level One (L1) learning.The L1 learner treats IE as a standard classification task,
augmented with a simple mechanism to attach predicted startand end tags.

Fig. 2 shows the learning process. The set of training examples are converted to a
set of instances for the start and end tags as described above. Each token in each train-
ing document becomes a single instance, and is either a positive or negative example of
a start or end tag. Each of these instances is encoded according to several features for
the particular token in question and the tokens surroundingit. Then the attributes are
filtered according to information gain. These instances arepassed to a learning algo-
rithm1 which uses them to learn a model. At the end of the L1 training phase we have
models for start and end tags and all the start-end pairs.

The start-end pairs are passed to the tag-matcher which is charged with matching
start and end tags. Our experiments involve a tag-matcher which derives a histogram
based on the number of tokens between each start and end tag inthe training data.
When matching predictions, the probability of a start-tag being paired with an end-tag
is estimated as the proportion with which a field of that length occurred in the training
data. This approach performs adequately and we don’t focus on the tag-matching further
in this paper. A more intelligent tag-matcher may improve performance in the future.
For example, the tag-matcher might incorporate a learning component that learns to
shift tags and correct errors in the output predictions.

1 Our current experiments are based on Weka [14]. We used Weka’s SMO [10] algorithm for the
learner, but other algorithms could be substituted.
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Fig. 2.ELIE architecture.

Level two (L2) learning.The L1 learner builds its model based on a very large number
of negative instances and a small number of positive instances. Therefore the prior
probability that an arbitrary instance is a boundary is verysmall. This very low prior
probability means that the L1 model is much more likely to produce false negatives than
false positives.

The L2 learner is learned from training data in which the prior probability that a
given instance is a boundary is much higher than for the L1 learner and the number
of irrelevant instances is vastly reduced. This “focused” training data is constructed as
follows. When building the L2 start model, we take only the instances that occur a fixed
distance before an end tag. Similarly, for the L2 end model, we use only instances that
occur a fixed distance after a start tag.

Fig. 1 shows an example of the the instances used by L1 and L2 with a looka-
head/lookback of 3. In this example the token “Bill” is the start of a field and the token
“Wescott” is the end of a field. When building the L1 classifiers we use all the available
instances. When building the L2 start model we use the end token and the 3 tokens
preceding it. When building the end model we use the start token and the three tokens
following it. Note that these L2 instances are encoded in thesame way as for L1; the
difference is simply that the L2 learner is only allowed to look at a small subset of
the available training data. When extracting, the L2 end classifier is only applied to the
three tokens following the token which L1 tagged as a start and the token itself. Simi-
larly the L2 start classifier is only applied to instances tagged as an end by L1 and the
three preceding tokens.

This technique for selecting training data means that the L2models are likely to
have much higher recall but lower precision than L1 models. If we were to blindly
apply the L2 model to the entire document, it would generate alot of false positives.
Therefore, as shown in Fig. 2 and Fig. 1, the reason we can use the L2 model to improve



performance is that we only apply it to regions of documents where the L1 model has
made a prediction. Specifically, during extraction, the L2 classifiers use the predictions
of the L1 models to identify parts of the document that are predicted to contain fields.
Since the L1 classifiers generally have high precision but low recall, the intent is that
this procedure will enable ELIE to converge to the correct boundary classifications.

The two level approach takes advantage of the fact that at L1 we have two highly
dependent learners, each with very high precision. Thus a prediction by one of them
indicates with very high probability that the second shouldmake a prediction. When
training the L2 classifier, we drastically alter the prior probabilities of the training data
by using only the instances within a fixed distance before or after an annotated start or
end. This L2 classifier is much more likely to make predictions as it was trained on a
much smaller set of negative instances. Thus it is more likely to identify starts or ends
that the L1 classifier missed.

4 Experiments

We evaluated our ELIE algorithm on three benchmark datasets and compared the results
to those achieved by other IE algorithms.

Evaluation method. A truly comprehensive comparison would compare each algo-
rithm on the same dataset, using the same splits, and the exact same scoring method.
Unfortunately, a conclusive comparison of the different IEalgorithms is impossible us-
ing the published results. The other algorithms are evaluated using slightly different
methodologies [7] or simply do not report results for every corpus.

There are several orthogonal issues regarding evaluation such as whether to give
credit for partial matches and whether all occurrences of the field must be extracted.
Our evaluation is conservative and so it is likely that our results are understated in
comparison to competitors which have adopted a more liberalevaluation strategy.

Experimental setup. We evaluate our algorithm on three standard benchmark datasets,
the seminar announcements (“SA”) dataset [5], the job postings (“Jobs”) dataset [2],
and the Reuters corporate acquisitions (“Reuters”) dataset [5], using 31 fields (see
Fig 3). SA consists of 485 seminar announcements annotated for 4 fields detailing up-
coming seminars. Jobs consists of 300 newsgroup messages detailing jobs available in
the Austin area. The dataset has been annotated for 17 fields.Reuters consists of 600
Reuters articles describing corporate acquisitions. Thisdataset has been annotated for
10 fields. It is a more difficult task than the other two becausesome of the fields are
related. For example, there are separate annotations for the name of a company and
abbreviated versions of the company name.

We used a 50:50 split of the dataset repeated 10 times. All experiments use a window
of length 3 tokens, and L2 lookahead/lookback of 10 tokens. On the SA dataset, this
typically gives a set of approximately 80 thousand traininginstances (a few hundred of
which are positive) and approximately 50 thousand attributes. These experiments have
all features enabled initially, and then the top 5000 features ranked by information gain
are used for learning the model.



We compare our system against BWI, RAPIER, LP2 and SNOW-IE using the avail-
able published results for each system. Many of the systems have not published results
for all the fields.

Experimental results. Fig. 3 compares the performance of L1 and L2. The L1 results
are measured by passing the predictions of the L1 classifiersdirectly to the Tag-Matcher,
bypassing the L2 classifiers (see Fig. 2). All fields are showntogether. The first 4 are
from SA, the next 17 from Jobs and the last 10 from Reuteurs. Onevery field L1 has
equal or higher precision than L2. On every field, L2 has higher recall than L1.On
several fields, especially those with lower performance, the increase in recall is large.
There are only three fields where L1 has higher f-measure thanL2. Thus L2 causes
precision to drop and recall to rise. But in most cases the increase in recall is greater
than the drop in precision giving a corresponding increase in f-measure.

Fig. 4 compares the precision, recall and f-measure of ELIEL2 with BWI,RAPIER,
LP2 and SNOW-IE. For each graph the horizontal axis shows the performance of
ELIEL2 while the vertical axis shows the performance of the other IEsystems. Points
below the diagonal indicate that ELIEL2 outperformed the particular IE system on a
particular field. Points above the diagonal indicate that the competitor IE system out-
performed ELIEL2.

On recall and f-measure ELIEL2 outperforms the other algorithms on most of the
fields. Some of the other systems perform better than ELIEL2 when precision is con-
sidered. However ELIEL2 improved recall at the expense of precision and if the task
requires high precision then ELIEL1 can be used instead.

Learning algorithms and features To test how the learning algorithm and the dif-
ferent feature-sets contribute to performance, we evaluated ELIE with various learning
algorithms and reduced sets of features on the SA dataset.

We compared SMO with several well-known learning algorithms: naive Bayes,
Winnow [8] and Ripper [4]. For SA, naive Bayes performs quitepoorly on all fields.
Winnow performs well on the etime field, but poorly on the other fields. Ripper per-
forms well on all fields and is competitive with SMO.

Experiments using different feature-sets showed that for the location, stime and
etime fields most of the performance comes using the token features alone. For each of
these fields adding the POS, GAZ or orthographic features only gives a small increase
in performance.

For the speaker field, we get F1=65.0% using only the token features, compared to
88.5% using all features. Using either the POS or orthographic features in addition to
the token features gives an 7% increase in performance, while using the token and GAZ
features gives a 16% increase over using token features alone. This indicates that the
use of a gazetteer significantly enhances performance on this field. This is unsurprising
as the gazetteer contains a list of first and last names. However the addition of POS and
orthographic also provide significant benefit. On most fieldsthe gazetteer provides little
benefit. However for most fields our gazetteer did not containinformation relevant to
that field. An appropriate gazetteer list could improve performance on several fields but
in general this may involve significant additional effort.



Fig. 3. Comparison of performance of L1 versus that of L2



Fig. 4.Comparison of ElieL2with other IE systems



L1 L2

Dataset Field FP:FN%FPptl %FNptl FP:FN%FPptl %FNptl

SA speaker 0.17 22 62 1.05 17 8
SA location 0.19 76 67 0.51 75 20
SA stime 0.2 27 86 4.72 9 36
SA etime 0.05 64 92 0.93 36 18
Jobs id 0 0 100 0 0 100
Jobs title 0.29 71 58 0.9 56 23
Jobs company 0.14 9 10 0.27 14 2
Jobs salary 0.4 76 68 0.66 68 43
Jobs recruiter 0.41 22 22 0.52 21 11
Jobs state 0.79 9 24 1.11 9 6
Jobs city 0.56 1 28 0.95 1 1
Jobs country 0.36 0 6 0.44 0 3
Jobs language 0.25 41 45 0.52 30 10
Jobs platform 0.27 43 43 0.54 37 10
Jobs application 0.18 23 27 0.38 14 3
Jobs area 0.15 34 25 0.41 25 6
Jobs req_exp 0.28 8 41 0.92 6 9
Jobs des_exp 0.09 100 10 0.23 54 12
Jobs req_degree 0.21 0 34 0.53 2 1
Jobs des_degree 0.04 0 10 0.51 5 0
Jobs post_date 4.8 0 100 ∞ 0 0

Reuters acquired 0.05 32 32 0.45 18 3
Reuterspurchaser 0.13 10 35 0.7 8 3
Reuters seller 0.06 1 6 0.24 2 0
Reuters acqabr 0.09 9 14 0.22 8 1
Reuters purchabr 0.07 5 11 0.20 8 1
Reuters sellerabr 0.05 1 4 0.15 2 0
Reuters acqloc 0.07 16 27 0.46 16 3
Reuters acqbus 0.05 29 14 0.26 25 4
Reuters dlramt 0.24 27 53 1.39 15 14
Reuters status 0.22 23 35 0.87 21 8

Fig. 5. ELIE error analysis.

ELIE error analysis. Table 5 shows details of the errors made by ELIE. For all fields
in the three benchmark datasets we show the ratio of false positives to false negatives
(FP:FN). It also shows the percentage of false positives that were partially correct and
the percentage of false negatives that were partially predicted.

For a false positive to be partially correct means ELIE extracted a fragment, but that
it was correct at only one end (either the start or end was not predicted exactly). These
kinds of predictions are still useful in a practical settingand a less conservative method
of evaluation might give some credit for these kinds of errors. On several fields, a large
proportions of the errors are of this form.



For a false negative to be partially predicted means that fora fragment that we failed
to extract, we predicted either the start or the end correctly, but may not have predicted
the other. These are the kinds of errors that facilitate the improvement shown by L2
over L1. In general L2 gives a large reduction in these partial errors.

The ratio FP:FN shows that at L1, most of the errors are false negatives, while at L2
we generally see an increase in false positives and a reduction in false negatives.

Discussion and summaryOur system outperformed those compared against on most
fields in terms of recall or f-measure. If high precision is required then ELIEL1 can be
used. We evaluated our system conservatively so its performance may be understated in
relation to competitors.

The L2 learner consistently improves recall while keeping precision high. On more
difficult fields the improvements are generally larger. The L2 classifier always improves
recall and usually keeps precision high enough to improve F1.

An investigation of the errors that ELIE produces reveals that most errors are false
negatives. Those that are false positives are mostly of two kinds. The first are as a result
of using exact matching for evaluation, where we have taggedone end of the field
correctly but not the other. The second occur as a result of labeling errors on the data
where we extract something that should have been labeled butwas not.

It is likely that the accuracy of ELIE has two main sources. Firstly, since the L1 clas-
sifier alone often gives better performance than other IE algorithms, we conclude that
the use of support vector machines as the learning algorithmgives rise to substantial
improvement compared to the specialized learning algorithms used by most IE algo-
rithms. Secondly the two-level classification that we have described can give significant
increases in performance. It increases recall while maintaining good precision. In many
cases, L2 improves ELIE ’s L1 performance substantially.

5 Conclusion

We have described an approach that treats Information Extraction as a token classifi-
cation task. Using SMO, a fast support vector machine implementation, our ELIE al-
gorithm learns a set of classifiers for information extraction that are competitive with,
and in many cases outperform, current IE algorithms based onspecialized learning al-
gorithms.

We also described multi-level boundary classification, a new way of combining clas-
sifiers for Information Extraction that yields significant performance improvements.
This approach exploits the high precision of token classifiers to increase the recall of
the IE algorithm. Our algorithm outperformed current IE algorithms on three bench-
mark datasets. On several fields, especially those that are more difficult, it gave large
improvements in performance.

There is scope for improvement in ELIE. We plan to analyze in detail why the L2
approach can give such dramatic improvements in recall, andspecify precisely what
properties of the algorithm and/or documents facilitate this.

Other learning components may improve ELIE ’s performance further, e.g. a com-
ponent that learns to recognize and correct prediction errors similar to LP2’s correction



rules. Another modification might add a third level classifier that takes the predictions
of L1 and L2 and classifies the extracted fragment as being correct or not.

Performance may be improved by changing how ELIE combines L1 and L2 predic-
tions. Currently ELIE uses all the L1 and L2 predictions. However it might be feasible
to use the L2 predictions to identify incorrect predictionsfrom L1 and remove them.
Finally, a more sophisticated tag-matcher could improve overall performance.
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