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Abstract. We investigate the application of classification technéeethe prob-

lem of information extraction (IE). In particular we use popt vector machines
and several different feature-sets to build a set of classifior IE. We show

that this approach is competitive with current state-ef-#nt IE algorithms based
on specialized learning algorithms. We also introduce a teshinique for im-

proving the recall of our IE algorithm. This approach uses@:fevel ensemble
of classifiers to improve the recall of the extracted fragmmevhile maintaining

high precision. We show that this approach outperformsectirstate-of-the-art
IE algorithms on several benchmark |E tasks.

1 Introduction

Information extraction (IE) is the process of identifyinget of pre-defined relevant
items in text documents. Numerous IE algorithms based ommadearning techniques
have been proposed recently. Many of these algorithms aomo6iithic” in the sense
that there is no clean separation between the learningitdgoand the features used
for learning. Furthermore, many of the proposed algoriteffectively reinvent some
aspects of machine learning, using their own specializathieg algorithms, rather
than exploit existing machine learning algorithms.

In this paper, we investigate how relatively “standard” hiae learning techniques
can be applied to information extraction. We adopt the steshtlE as classification”
formalization [6, 3], in which IE becomes the task of clagisif) every document posi-
tion as either the start of a field to extract, the end of a fietdheither. We investigate
how different feature-sets contribute to the performard@oalgorithm. We show that
this approach with support vector machine classificatiocoispetitive and in many
cases superior to current state of the art approaches basddarithms crafted specif-
ically for IE.

Based on these initial results, we then describe improvéswerthis basic approach
that give superior performance on a variety of benchmarks$kg. Our enhancements—
which we call multi-level boundary classification—congistombining the predictions
of two sets of classifiers, one set with high precision andvaitte high recall.

The intuition behind this approach is as follows. Our systemsists of two sets of
classifiers (L1 and L2). The L1 classifiers adopt the the stehtiE as classification”
approach. L2 uses a second level of “biased” classifiersxfra& a fragment we need



to identify both its start and end. If the L1 classifier préslizne end of the fragment (ei-
ther the start or the end, but not both) we assume that it iecbiVe use this prediction
as a guide to the L2 classifier to identify the complete fragnisee Fig. 1).
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Fig.1.L1 and L2: An example

We make two contributions. First, we show that the use of drhefshelf sup-
port vector machine implementation is competitive withreat IE algorithms based
on specialized learning algorithms. Second, and morefggnt, we introduce a novel
multi-level boundary classification approach, and denratesthat this new approach
outperforms current IE algorithms on a variety of benchntasks.

2 Prior research

We begin with a discussion and comparison of some of the moraipent adaptive |IE
algorithms.

RAPIER [2] uses inductive logic programming techniques to discoutes for ex-
tracting fields from documents. It does not try to identifgrsind end tags separately,
but learns to identify relevant strings in their entiretyafRER performs specific-to-
general bottom-up search by starting with the most specificfor each positive train-
ing example and repeatedly trying to generalize these talesver more positive ex-
amples. RPIER uses as its features the tokens, part-of-speech informatid some
semantic class information.

BWI [6] learns a large number of simple wrapper patterns,@rdbines them us-
ing boosting. BWI learns separate models for identifyiragtsand end tags and then
uses a histogram of training fragment lengths to estima&taturacy of pairing a given



start and end tag. BW1 learns to identify start and end taggywsform of specific-to-
general search. BWI's features consist of the actual tqlsemplemented by a number
of orthographic generalizations (alphabetic, capitaljzdphanumeric, lower-case, nu-
meric, punctuation), as well as a modest amount of lexicahkedge (a list of first and
last names).

LP? [3] learns symbolic rules for identifying start and end tdgke BWI, it iden-
tifies the starts and ends of fields separately. In additidaken and orthographic fea-
tures, LP uses some shallow linguistic information such as morpHotd@nd part-
of-speech information. It also uses a user-defined dictiooagazetteer. Its learning
algorithm is a covering algorithm which starts with spedifiles and tries to generalize
them to cover as many positive examples as possible. Thiepsds supplemented by
learning correction rules that shift predicted tags in otdeorrect some errors that the
learner makes.

SNoW-IE [13]: SNoW [12] is a relational learning algorithhat is specifically tai-
lored towards large scale learning tasks such as IE. SNoWdgifies fragments to
be extracted rather than separately identifying start awttags. It uses token, ortho-
graphic, POS and semantic features. It learns in two stagesfirst stage involves
filtering all the candidate fragments while the second imeslpicking the correct frag-
ments from those remaining.

BW!I uses the fewest features: it uses just the tokens and saimegraphic infor-
mation. LP ,RAPIER and SNoW-IE supplement these features with part-of-spaedh
semantic information.

3 The ELIE algorithm

Information Extraction as classification. We treat tasks with multiple fields as mul-
tiple independent single-field extraction tasks i.e. weyatract one field at a time.

Following [6, 3], we treat the identification of field startdhend positions as distinct
token classification tasks. All tokens that begin a labelkeld fire positive instances for
the start classifier, while all the other tokens become megatstances for this clas-

sifier. Similarly, the positive examples for the end classifire the last tokens of each
labeled field, and the other instances are negative examples

Features and encoding.Each instance has a set of features that describe the given to

ken. The features include the specific token, as well asqgfaspeech (POS), chunking,
orthographic and gazetteer information.

Token. The actual token.

POS. The part-of-speech of the token. Each token is tagged wstltatresponding
POS using Brill's POS tagger [1]. We also represent chunkifigrmation about
the tokens. The POS tags are grouped into noun-phrases dngivases.

Gaz. The values associated with the token in a gazetteer. Thétgazss a user-defined
dictionary. It contains lists of first-names and last-nataken from the U.S. census
bureau, a list of countries and cities, time identifiers (am), titles (Jr., Mr), and
a list of location identifiers used by the U.S. postal ser¢iteeet, boulevard).



Orthographic. These features give various orthographic information abi@itoken.
Examples of these features include whether the token isrtqgse, lower-case,
capitalized, alphabetic, numeric or punctuation.

Encoding all tokens in the dataset in this manner gives a laege number of at-
tributes. We therefore filter the attributes according forimation gain [11] in order to
discard irrelevant features and reduce learning time.

Relational information is encoded using additional feasurTo represent an in-
stance, we encode all these features for that particulantdk addition, for a fixed
window size ofw, we add the same features for the previausokens and the next
w tokens. For example, if we use a window size of 1, then eadhrige has a fea-
ture to represent the token for that instance, the tokeneoptaceding instance and the
token of the next instance. Similarly, there are featuragpoesent the POS, gaz and
orthographic information of the current instance and tlevijmus and next instances.

Learning with ELIE. The ELIE algorithm has two distinct phases. In the first phase,
ELIE simply learns to detect the start and end of fragments to tsaa®d. Our experi-
ments demonstrate that this first phase generally has heglispgn but low recall. The
second phase is designed to increase recall. We find thabftery false negatives are
“almost” extracted (the start but not the end is correctnidfied, or the end but not the
start). In the second phase.IE is trained to detect either the end of a fragment given
its beginning, or the beginning of a fragment given its end.

Level One (L1) learning.The L1 learner treats IE as a standard classification task,
augmented with a simple mechanism to attach predictedssidrénd tags.

Fig. 2 shows the learning process. The set of training exasmle converted to a
set of instances for the start and end tags as described.dbeaske token in each train-
ing document becomes a single instance, and is either aygositnegative example of
a start or end tag. Each of these instances is encoded angdodseveral features for
the particular token in question and the tokens surrounidirfighen the attributes are
filtered according to information gain. These instancespassed to a learning algo-
rithm® which uses them to learn a model. At the end of the L1 trainimase we have
models for start and end tags and all the start-end pairs.

The start-end pairs are passed to the tag-matcher whictargeth with matching
start and end tags. Our experiments involve a tag-matchehvderives a histogram
based on the number of tokens between each start and end tiag iraining data.
When matching predictions, the probability of a start-tagh paired with an end-tag
is estimated as the proportion with which a field of that léngtcurred in the training
data. This approach performs adequately and we don'’t fatttsetag-matching further
in this paper. A more intelligent tag-matcher may improvefgrenance in the future.
For example, the tag-matcher might incorporate a learnargponent that learns to
shift tags and correct errors in the output predictions.

1 Our current experiments are based on Weka [14]. We used #8k&O [10] algorithm for the
learner, but other algorithms could be substituted.
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Level two (L2) learning.The L1 learner builds its model based on a very large number
of negative instances and a small number of positive insan€herefore the prior
probability that an arbitrary instance is a boundary is \@nall. This very low prior
probability means that the L1 model is much more likely todhrce false negatives than
false positives.

The L2 learner is learned from training data in which the ppoobability that a
given instance is a boundary is much higher than for the Linkraand the number
of irrelevant instances is vastly reduced. This “focusedihing data is constructed as
follows. When building the L2 start model, we take only thstamces that occur a fixed
distance before an end tag. Similarly, for the L2 end modelpyge only instances that
occur a fixed distance after a start tag.

Fig. 1 shows an example of the the instances used by L1 and ttRamiooka-
head/lookback of 3. In this example the token “Bill” is tharstof a field and the token
“Wescott” is the end of a field. When building the L1 classHiare use all the available
instances. When building the L2 start model we use the enehtalkd the 3 tokens
preceding it. When building the end model we use the stadrt@nd the three tokens
following it. Note that these L2 instances are encoded instirae way as for L1; the
difference is simply that the L2 learner is only allowed tokoat a small subset of
the available training data. When extracting, the L2 endsifer is only applied to the
three tokens following the token which L1 tagged as a stadttha token itself. Simi-
larly the L2 start classifier is only applied to instancegyedjas an end by L1 and the
three preceding tokens.

This technique for selecting training data means that thenbo2lels are likely to
have much higher recall but lower precision than L1 moddlsvd were to blindly
apply the L2 model to the entire document, it would generdts af false positives.
Therefore, as shown in Fig. 2 and Fig. 1, the reason we camade&tmodel to improve



performance is that we only apply it to regions of documertisng the L1 model has
made a prediction. Specifically, during extraction, the laasifiers use the predictions
of the L1 models to identify parts of the document that areligted to contain fields.
Since the L1 classifiers generally have high precision butriecall, the intent is that
this procedure will enable IEE to converge to the correct boundary classifications.

The two level approach takes advantage of the fact that atd-have two highly
dependent learners, each with very high precision. Thugdigtion by one of them
indicates with very high probability that the second shamiake a prediction. When
training the L2 classifier, we drastically alter the prioopabilities of the training data
by using only the instances within a fixed distance beforefter an annotated start or
end. This L2 classifier is much more likely to make predicti@s it was trained on a
much smaller set of negative instances. Thus it is moreyliteeldentify starts or ends
that the L1 classifier missed.

4 Experiments

We evaluated our BE algorithm on three benchmark datasets and compared tHesresu
to those achieved by other |IE algorithms.

Evaluation method. A truly comprehensive comparison would compare each algo-
rithm on the same dataset, using the same splits, and thé s@e scoring method.
Unfortunately, a conclusive comparison of the differenalgorithms is impossible us-
ing the published results. The other algorithms are evatliasing slightly different
methodologies [7] or simply do not report results for eveypeis.

There are several orthogonal issues regarding evaluaticim & whether to give
credit for partial matches and whether all occurrences effigld must be extracted.
Our evaluation is conservative and so it is likely that owsults are understated in
comparison to competitors which have adopted a more lilealation strategy.

Experimental setup. We evaluate our algorithm on three standard benchmarketatas
the seminar announcements (“SA") dataset [5], the job pgst{*Jobs”) dataset [2],
and the Reuters corporate acquisitions (“Reuters”) dafa$eusing 31 fields (see
Fig 3). SA consists of 485 seminar announcements annotatekffelds detailing up-
coming seminars. Jobs consists of 300 newsgroup messaigésiggobs available in
the Austin area. The dataset has been annotated for 17 fizdd$ers consists of 600
Reuters articles describing corporate acquisitions. @htaset has been annotated for
10 fields. It is a more difficult task than the other two becaam®me of the fields are
related. For example, there are separate annotationsdangime of a company and
abbreviated versions of the company name.

We used a 50:50 split of the dataset repeated 10 times. Adrérpnts use a window
of length 3 tokens, and L2 lookahead/lookback of 10 tokensti@ SA dataset, this
typically gives a set of approximately 80 thousand trainimgiances (a few hundred of
which are positive) and approximately 50 thousand attebuthese experiments have
all features enabled initially, and then the top 5000 fesgtuanked by information gain
are used for learning the model.



We compare our system against BWKWIRER, LP? and SNoW-IE using the avail-
able published results for each system. Many of the systewes ot published results
for all the fields.

Experimental results. Fig. 3 compares the performance of L1 and L2. The L1 results
are measured by passing the predictions of the L1 clasdifiexstly to the Tag-Matcher,
bypassing the L2 classifiers (see Fig. 2). All fields are shtagether. The first 4 are
from SA, the next 17 from Jobs and the last 10 from Reuteursev@ny field L1 has
equal or higher precision than L2. On every field, L2 has higkeall than L1.0n
several fields, especially those with lower performance,iticrease in recall is large.
There are only three fields where L1 has higher f-measure ltBahus L2 causes
precision to drop and recall to rise. But in most cases theease in recall is greater
than the drop in precision giving a corresponding increagenieasure.

Fig. 4 compares the precision, recall and f-measureLof & with BWI,RAPIER,

LP2 and SNoW-IE. For each graph the horizontal axis shows the perfonmanf
ELIE o while the vertical axis shows the performance of the othes\i§&ems. Points
below the diagonal indicate thatLEE 1, outperformed the particular IE system on a
particular field. Points above the diagonal indicate thatadbmpetitor IE system out-
performed EIE 1.

On recall and f-measureLE 1, outperforms the other algorithms on most of the
fields. Some of the other systems perform better tharE & when precision is con-
sidered. However BE 1, improved recall at the expense of precision and if the task
requires high precision then_LEe ;,; can be used instead.

Learning algorithms and features To test how the learning algorithm and the dif-
ferent feature-sets contribute to performance, we evadLitiE with various learning
algorithms and reduced sets of features on the SA dataset.

We compared SMO with several well-known learning algorishmaive Bayes,
Winnow [8] and Ripper [4]. For SA, naive Bayes performs quiterly on all fields.
Winnow performs well on the etime field, but poorly on the aotfields. Ripper per-
forms well on all fields and is competitive with SMO.

Experiments using different feature-sets showed thatHerldcation, stime and
etime fields most of the performance comes using the tokeuarfessaalone. For each of
these fields adding the POS, GAZ or orthographic featuresginés a small increase
in performance.

For the speaker field, we get F1=65.0% using only the toketufes, compared to
88.5% using all features. Using either the POS or orthogcdehtures in addition to
the token features gives an 7% increase in performanceg whihg the token and GAZ
features gives a 16% increase over using token features.dldms indicates that the
use of a gazetteer significantly enhances performance fi¢hd. This is unsurprising
as the gazetteer contains a list of first and last names. Hawtles addition of POS and
orthographic also provide significant benefit. On most fithésgyazetteer provides little
benefit. However for most fields our gazetteer did not cont#mrmation relevant to
that field. An appropriate gazetteer list could improve parfance on several fields but
in general this may involve significant additional effort.
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| I L1 I L2 |

Dataset Field ||[FP:FN%FP,;|%FN,||FP:FNY%FP,:|%FN,
SA | speaker|| 0.17| 22 62 1.05| 17 8
SA | location || 0.19| 76 67 0.51| 75 20
SA stime 0.2 27 86 472 9 36
SA etime 0.05| 64 92 0.93| 36 18

Jobs id 0 0 100 0 0 100
Jobs title 0.29| 71 58 0.9 56 23
Jobs | company|| 0.14| 9 10 0.27| 14 2
Jobs | salary 0.4 76 68 0.66| 68 43
Jobs | recruiter || 0.41| 22 22 0.52| 21 11

Jobs state 0.79| 9 24 111 9 6
Jobs city 056 1 28 095 1 1
Jobs | country || 0.36| O 6 044| O 3

Jobs | language|| 0.25| 41 45 0.52| 30 10
Jobs | platform || 0.27| 43 43 0.54| 37 10
Jobs |application 0.18| 23 27 0.38| 14 3
Jobs area 0.15| 34 25 041 25 6
Jobs | reg_exp || 0.28| 8 41 092| 6 9

Jobs | des_exp|| 0.09| 100 10 0.23| 54 12
Jobs [req_degree 0.21| O 34 053 2 1
Jobs |des_degrge0.04| 0 10 051| 5 0
Jobs | post_datg| 4.8 0 100 0 0 0
Reuters acquired|| 0.05| 32 32 0.45| 18 3
Reuterspurchasef| 0.13| 10 35 0.7 8 3
Reuters seller || 0.06| 1 6 024 2 0
Reuters acgabr || 0.09| 9 14 0.22| 8 1
Reuters purchabr|| 0.07| 5 11 0.20| 8 1
Reuters sellerabr|| 0.05| 1 4 0.15| 2 0
Reuters acqgloc || 0.07| 16 27 0.46| 16 3
Reuters acqgbus || 0.05| 29 14 0.26| 25 4
Reuters dlramt || 0.24| 27 53 1.39| 15 14
Reuters status || 0.22| 23 35 087 21 8

Fig. 5. ELIE error analysis.

ELIE error analysis. Table 5 shows details of the errors made hyeE For all fields
in the three benchmark datasets we show the ratio of falséyessto false negatives
(FP:FN). It also shows the percentage of false positivelsvileae partially correct and
the percentage of false negatives that were partially predii

For a false positive to be partially correct meanseEextracted a fragment, but that
it was correct at only one end (either the start or end was meatigted exactly). These
kinds of predictions are still useful in a practical settangfl a less conservative method
of evaluation might give some credit for these kinds of esr@n several fields, a large
proportions of the errors are of this form.



For a false negative to be partially predicted means that fragment that we failed
to extract, we predicted either the start or the end cosrdmtlt may not have predicted
the other. These are the kinds of errors that facilitate tingrovement shown by L2
over L1. In general L2 gives a large reduction in these pagtiars.

The ratio FP:FN shows that at L1, most of the errors are fagatives, while at L2
we generally see an increase in false positives and a reduntfalse negatives.

Discussion and summaryOur system outperformed those compared against on most
fields in terms of recall or f-measure. If high precision iquied then EIE;; can be
used. We evaluated our system conservatively so its pegafiacemmay be understated in
relation to competitors.

The L2 learner consistently improves recall while keepirggfsion high. On more
difficult fields the improvements are generally larger. TReclassifier always improves
recall and usually keeps precision high enough to improve F1

An investigation of the errors thatLlE produces reveals that most errors are false
negatives. Those that are false positives are mostly of tadsk The first are as a result
of using exact matching for evaluation, where we have taggeziend of the field
correctly but not the other. The second occur as a resultefilzg errors on the data
where we extract something that should have been labelasldsuhot.

Itis likely that the accuracy of EE has two main sources. Firstly, since the L1 clas-
sifier alone often gives better performance than other IBréalgms, we conclude that
the use of support vector machines as the learning algowjiles rise to substantial
improvement compared to the specialized learning algostinsed by most IE algo-
rithms. Secondly the two-level classification that we haesodibed can give significant
increases in performance. It increases recall while maiimgigood precision. In many
cases, L2 improveslEE's L1 performance substantially.

5 Conclusion

We have described an approach that treats Information &draas a token classifi-
cation task. Using SMO, a fast support vector machine implaation, our EIE al-
gorithm learns a set of classifiers for information exti@aetihat are competitive with,
and in many cases outperform, current IE algorithms basegpecialized learning al-
gorithms.

We also described multi-level boundary classification yaway of combining clas-
sifiers for Information Extraction that yields significantérformance improvements.
This approach exploits the high precision of token clagsifie increase the recall of
the IE algorithm. Our algorithm outperformed current IEaithms on three bench-
mark datasets. On several fields, especially those that are difficult, it gave large
improvements in performance.

There is scope for improvement irLEE. We plan to analyze in detail why the L2
approach can give such dramatic improvements in recall spedify precisely what
properties of the algorithm and/or documents facilitats.th

Other learning components may improvelEs performance further, e.g. a com-
ponent that learns to recognize and correct prediction®similar to LP’s correction



rules. Another modification might add a third level classiffeat takes the predictions
of L1 and L2 and classifies the extracted fragment as beinmgcioor not.

Performance may be improved by changing haweecombines L1 and L2 predic-
tions. Currently EIE uses all the L1 and L2 predictions. However it might be fdasib
to use the L2 predictions to identify incorrect predictidram L1 and remove them.
Finally, a more sophisticated tag-matcher could improwral performance.
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