
Information Extraction by Convergent Boundary Classification

Aidan Finn and Nicholas Kushmerick
Smart Media Institute, Department of Computer Science, University College Dublin

{aidan.finn, nick}@ucd.ie

Abstract

We investigate the application of classification techniques to
the problem of information extraction (IE). In particular we
use support vector machines and several different feature-sets
to build a set of classifiers for information extraction. We
show that this approach is competitive with current state-of-
the-art information extraction algorithms based on special-
ized learning algorithms. We also introduce a new tech-
nique for improving the recall of IE systems called conver-
gent boundary classification. We show that this can give sig-
nificant improvement in the performance of our IE system
and gives a system with both high precision and high recall.

Introduction
Information extraction (IE) is the process of identifying aset
of pre-defined relevant items in text documents. Numerous
IE systems based on machine learning techniques have been
proposed recently. Many of these algorithms are “mono-
lithic” in the sense that there is no clean separation between
the learning algorithm and the features used for learning.
Furthermore, many of the proposed algorithms effectively
reinvent some aspects of machine learning rather than ex-
ploit existing machine learning algorithms.

In this paper, we investigate how relatively “standard”
machine learning techniques can be applied to information
extraction. We adopt the standard “IE as classification” for-
malization (Freitag & Kushmerick 2000; Ciravegna 2001),
in which IE becomes the task of classifying every document
position as either the start of a field to extract, the end of a
field, or neither. We investigate how different feature-sets
contribute to the performance of our system.

Based on these initial results, we then describe improve-
ments on this basic approach that give higher performance
on a variety of benchmark IE tasks. Our enhancements–
which we call convergent boundary classification–consist of
combining the predictions of two sets of classifiers, one set
with high precision and one with high recall.

The intuition behind this approach is as follows: We as-
sume the base classifiers have high precision and predict
very few false positives. To extract a fragment we need to
identify both its start and end tags. If the base classifier pre-
dicts one tag (start or end) but not the other, we assume that

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

it is correct. We use this prediction as a guide to a second
classifier to identify the missing complementary tag.

We make two contributions. First, we show that the use
of an off-the-shelf support vector machine implementation
is competitive with current IE systems based on specialized
learning algorithms. Second, we introduce a novel multi-
level approach called convergent boundary classification and
demonstrate that this new approach outperforms current sys-
tems.

Previous algorithms

We begin with a discussion and comparison of some of the
more prominent adaptive IE algorithms.

RAPIER (Califf & Mooney 1999) uses inductive logic
programming techniques to discover rules for extracting
fields from documents. It does not try to identify start and
end tags separately, but learns to identify relevant strings in
their entirety. RAPIER performs specific-to-general bottom-
up search by starting with the most specific rule for each
positive training example and repeatedly trying to general-
ize these rules to cover more positive examples. RAPIER
uses as its features the tokens, part-of-speech information
and some semantic class information.

BWI (Freitag & Kushmerick 2000) learns a large num-
ber of simple wrapper patterns, and combines them using
boosting. BWI learns separate models for identifying start
and end tags and then uses a histogram of training frag-
ment lengths to estimate the accuracy of pairing a given
start and end tag. BWI learns to identify start and end
tags using a form of specific-to-general search. BWI’s fea-
tures consist of the actual tokens, supplemented by a number
of orthographic generalizations (alphabetic, capitalized, al-
phanumeric, lower-case, numeric, punctuation), as well asa
modest amount of lexical knowledge (a list of first and last
names).

LP2 (Ciravegna 2001) learns symbolic rules for identify-
ing start and end tags. Like BWI, it identifies the starts and
ends of fields separately. In addition to token and ortho-
graphic features, LP2 uses some shallow linguistic informa-
tion such as morphological and part-of-speech information.
It also uses a user-defined dictionary or gazetteer. Its learn-
ing algorithm is a covering algorithm which starts with spe-

cific rules and tries to generalize them to cover as many pos-
itive examples as possible. This process is supplemented by
learning correction rules that shift predicted tags in order to
correct some errors that the learner makes.

BIEN (Peshkin & Pfeffer 2003) uses a dynamic Bayesian
network for learning. It uses several different kinds of fea-
tures: in addition to the token information and POS infor-
mation, it uses chunking, a gazetteer, a lemmatiser and se-
mantic and orthographic features.

BWI uses the fewest features: it uses just the tokens and
some orthographic information. LP2 and RAPIER supple-
ment these features with part-of-speech and semantic infor-
mation. BIEN has the most sophisticated feature set.

It is difficult to compare each of these systems directly
for several reasons. First, there are a variety of “simple”
methodological differences (e.g., using a slightly different
scoring mechanism) (Lavelliet al. 2004). More signifi-
cantly, most of the literature reports only results for the sys-
tem in its entirety. To summarize, it is difficult to know how
much of the performance differences arise from different
feature sets, how much from different learning algorithms,
and how much from differences in experimental procedure.

The ELIE algorithm
Information Extraction as classification
Following (Freitag & Kushmerick 2000; Ciravegna 2001),
the approach that we use is to treat the identification of frag-
ment start and end positions as distinct token classification
tasks. The instances are all tokens in the document. All to-
kens that begin a labeled field are positive instances for the
start classifier, while all the other tokens become negative
instances for this classifier. Similarly, the positive examples
for the end classifier are the last tokens of each labeled field,
and the other instances are negative examples.

Each instance has a set of features that describe the given
token. The features include the specific token, as well as
part-of-speech (POS), chunking, orthographic and gazetteer
information. The features are described in more detail be-
low. In addition, we add features to represent a fixed-width
window of tokens on either side of the instance’s token.

Features and encoding
ELIE uses several kinds of features.

Token The actual token.

POS The part-of-speech of the token. Each token is tagged
with its corresponding POS using Brill’s POS tagger
(Brill 1994). We also represent chunking information
about the tokens. The POS tags are grouped into noun-
phrases and verb-phrases.

Gaz The values associated with the token in a gazetteer.
The gazetteer is a user-defined dictionary. It contains lists
of first-names and last-names taken from the U.S. census
bureau, a list of countries and cities, time identifiers (am,
pm), titles (Jr., Mr), and a list of location identifiers used
by the U.S. postal service (street, boulevard).

Orthographic These features give various orthographic in-
formation about the token. Examples of these features
include whether the token is upper-case, lower-case, cap-
italized, alphabetic, numeric or punctuation.

To represent an instance, we encode all these features for
that particular token. In addition, for a fixed window size of
w, we add the same features for the previousw tokens and
the nextw tokens. For example, the string

Place: WeH 4601
Speaker: Alex Pentland

would be tokenized and tagged as

Token POS/Chunk Gaz Orthographic
place NNP alpha, cap

: punct
weh NNP alpha, cap
4601 num
\n

speaker NNP alpha, cap
: punct

alex NNP, NPs firstname alpha, cap
pentlandNNP, NPe lastname alpha, cap

If we encode the instance centered at the token ‘alex’, us-
ing a window of size 1, we would get the following features:

T alex 0, T :-1, T pentland +1,
P NNP 0, P NNP +1,
C NP s 0, C NP e +1,
G firstname 0, G lastname +1,
O alpha 0, O cap 0 , O punct -1,
O alpha +1, O cap +1

All tokens in the dataset are encoded in this manner. This
gives a very large number of attributes. We therefore filter
the attributes according to information gain (Quinlan 1993)
in order to discard irrelevant features and reduce learning
time.

Learning with E LIE

The ELIE algorithm has two distinct phases. In the first
phase, ELIE simply learns to detect the start and end of frag-
ments to be extracted. Our experiments demonstrate that this
first phase generally has high precision but low recall. The
second phase is designed to increase recall. We find that
very often false negatives are “almost” extracted (the start
but not the end is correctly identified, or the end but not the
start). In the second phase, which we call convergent bound-
ary classification, ELIE is trained to detect either the end of a
fragment given its beginning, or the beginning of a fragment
given its end. In this way, ELIE iteratively converges to the
correct boundary classifications.

Level One (L1) learning. The L1 learner treats IE as a
standard classification task, augmented with a simple mech-
anism to attach predicted start and end tags.

Figure 1 show the learning process. The set of training
examples are converted to a set of instances for the start and
end tags as described above. Each token in each training

� � � � � � � �
� � � 	
 � � �

� � �
� � � � � � �

� � � � �
� � � � ! "

� � � � �
� � � � # �

$ � % & ' # �
(

) � � * + �

, " ! ' # ' # - . # � ! # + � �
� ! "

, " ! ' # ' # - . # � ! # + � �
� # �

. # � ! # + � / ' # � � /
� ! "

. # � ! # + � / ' # � � /
� # �

� ! " � � # � 0 ! ' " �

� � � � �
� 1 � � # �

� � � � �
� 1 � � ! "

2 � 32 � 3

2 � 3 2 � 3

! " ' & * � 4 � � " ' # - ! " ' & * � 4 � � " ' # -

Figure 1: Learning

document becomes a single instance, and is either a pos-
itive or negative example of a start or end tag. Each of
these instances is encoded according to several features for
the particular token in question and the tokens surrounding
it. Then the attributes are filtered according to information
gain. These instances are passed to a learning algorithm1

which uses them to learn a model. At the end of the L1
training phase we have models for start and end tags and all
the start-end pairs.

The start-end pairs are passed to the tag-matcher which is
charged with matching start and end tags. Our experiments
involve a tag-matcher which generates a histogram based on
the number of tokens between each start and end tag in the
training data. When matching predictions, the probability
of a start-tag being paired with an end-tag is estimated as
the proportion with which a field of that length occurred in
the training data. This approach performs adequately and
we don’t focus on tag-matching further in this paper. A
more intelligent tag-matcher may improve performance in
the future. For example, the tag-matcher might incorporate
a learning component that learns to shift tags and correct er-
rors in the output predictions.

Level two (L2) learning The L1 learner builds its model
based on a very large number of negative instances and a
small number of positive instances. Therefore the prior
probability that an arbitrary instance is a boundary is very
small. This gives a model that has very high precision. Be-
cause the prior probability of predicting a tag is so low, when
we actual do predict a tag, it is very likely that the prediction
is correct. The L1 model is therefore much more likely to

1Our current experiments are based on Weka (Witten & Frank
2000). We used Weka’s SMO (Platt 1998; Keerthiet al. 2001) al-
gorithm for the learner, but other algorithms could be substituted.
We performed some initial experiments using various learning al-
gorithms, and SMO was consistently one of the most competitive.

5 6 7 8
9 : ; < = 6 > 8 7

? @ A
B @ C D E F G

H I J K L M J N O P Q N R O S

T N S J U V S J L V M N S

W X O N R
Y Z [S J L K J

W X O N R
Y Z [N V O

\ K N O Q M J Q X V S Y Z
S J L K J

\ K N O Q M J Q X V S Y Z
N V O

W X O N R
Y] [S J L K J

W X O N R
Y] [N V O

\ K N O Q M J Q X V S Y]
S J L K J

\ K N O Q M J Q X V S Y]
N V O

Figure 2: Extracting

produce false negatives than false positives.
The L2 learner is learned from training data in which the

prior probability that a given instance is a boundary is much
higher than for the L1 learner. This “focused” training data
is constructed as follows. When building the L2 start model,
we take only the instances that occur a fixed distance before
an end tag. Similarly, for the L2 end model, we use only
instances that occur a fixed distance after a start tag.

For example, an L2 window of size 10 means that the L2
start model is built using only all the groups of 10 instances
that occur before an end-tag in the training data, while the
L2 end model is built using only those instances that occur
in the 10 instances after a start tag in the training data. Note
that these L2 instances are encoded in the same way as for
L1; the difference is simply that the L2 learner is only al-
lowed to look at a small subset of the available training data.

This technique for selecting training data means that the
L2 models are likely to have much higher recall but lower
precision. If we were to blindly apply the L2 model to the
entire document, it would generate a lot of false positives.
Therefore, as shown in Figure 2, the reason we can use the
L2 model to improve performance is that we only apply it
to regions of documents where the L1 model has made a
prediction. Specifically, during extraction, the L2 classifiers
use the predictions of the L1 models to identify parts of the
document that are predicted to contain fields. Since the L1
classifiers generally have high precision but low recall, the
intent is that this procedure will enable ELIE to iteratively
converge to the correct boundary classifications.

Experiments
We evaluated our ELIE algorithm on two benchmark
datasets and compared the results to those achieved by other
IE systems.

Evaluation method A truly comprehensive comparison
would compare each algorithm on the same dataset, using
the same splits, and the exact same scoring system. Unfor-
tunately, a conclusive comparison of the different IE systems
is impossible using the current published results. The other

systems are evaluated using slightly different methodologies
(Lavelli et al. 2004).

There are several orthogonal issues regarding evaluation.
The first is whether to give credit for partial matches (where
an extracted fragment is correct at one end, but the other
end is the wrong token). We take the more conservative ap-
proach of using exact matching only. Thus if the speaker
is “Dr Lee, PhD” and we extract only “Dr Lee”, this would
count as both a false positive and a false negative. Our evalu-
ation is conservative with respect to counting true positives:
we must identify both the start and end exactly.

The second issue is how to count correct extractions and
errors. The most conservative approach is to require the sys-
tem to extract all occurrences of a field (all slot occurrences:
ASO) to get full credit. Thus if a document contained a tar-
get field which had two occurrences, “2pm” and “2:00”, then
the system would be required to extract both.

An alternative is a “template” approach (single-slot-
occurrence: SSO). In this case it is sufficient to extract either
2pm or 2:00 as they refer to the same entity. It is assumed
that there is one correct answer per slot, and the extraction
algorithm’s most confident prediction is used as its predic-
tion. SSO evaluation makes sense for fields where we know
that they refer to a single value (e.g. the time that a seminar
starts).

All the systems we compare to use some form of the tem-
plate filling (SSO) results although they don’t specify ex-
actly how they measure performance. Freitag, for example,
assumes one filler per slot and discards all but the most con-
fident predictions.

Experimental setup

We evaluate our system using two standard benchmark
datasets: the seminar announcements (SA) dataset (Fre-
itag 1998) and the job postings dataset (Califf & Mooney
1999). The SA dataset consists of 485 seminar announce-
ments from Carnegie Mellon University detailing upcoming
seminars. Each seminar is annotated with fields speaker, lo-
cation, start-time and end-time. The jobs dataset consists
of 300 newsgroup messaged detailing jobs available in the
Austin area. The dataset has been annotated for 17 fields
(see Table 3).

Both of these datasets contain numerous labeling errors
and inconsistencies and therefore it is unlikely that any sys-
tem can achieve perfect performance on them. In many doc-
uments some occurrences of a field are labeled while others
are not. This affects the all-slots evaluation more that the
template evaluation.

We used a 50:50 split of the dataset repeated 10 times.
Results for BWI, RAPIER and LP2 come from other sources
(Lavelli et al. 2004), and where possible we use the same
splits for each system.

All experiments use a window of length 3 tokens, and L2
lookahead/lookback of 10 tokens. On the SA dataset with
a 50/50 split, this typically gives a set of approximately 80
thousand training instances, a few hundred of which are pos-
itive, and approximately 50 thousand attributes. These ex-
periments have all features enabled initially, and then the

ELIEL1 ELIEL2 LP2

P R F1 P R F1 P R F1
speaker93.369.479.5 84.685.284.9 71.468.770.0
location 94.977.785.4 90.082.285.9 87.268.376.6
stime 96.785.290.6 84.796.390.2 89.087.788.3
etime 97.665.878.5 94.894.494.6 95.486.590.8

Table 1: Comparing ELIE and LP2 on the Seminar An-
nouncements dataset using ASO evaluation

ELIEL1 ELIEL2 BWI LP2 Rapier
P R F1 P R F1 P R F1 P R F1 P R F1

speaker95.876.284.9 91.086.088.5 79.159.267.7 87.070.077.6 80.9 39.4 53.0
location 96.175.984.8 93.180.786.5 85.469.676.7 87.066.075.1 91.0 60.5 72.7
stime 99.094.496.6 98.698.598.5 99.699.699.6 99.099.099.0 96.5 95.3 95.9
etime 99.077.887.0 95.797.396.4 94.494.494.4 94.097.095.5 95.8 96.6 96.2

Table 2: Comparing ELIE to other IE systems on the Semi-
nar Announcements Dataset

top 5000 features ranked by information gain are used for
learning the model.

Experimental results
Figure 1 compares ELIE and LP2 using ASO evaluation2.
We show results for our system with and without L2 classi-
fication. The L1 results are measured by passing the predic-
tions of the L1 classifiers directly to the Tag-Matcher, by-
passing the L2 classifiers (see Figure2). Using this mode of
evaluation, ELIE outperforms LP2 on all fields. On three
of the four fields ELIEL2 performs better than ELIEL1. On
the speaker and etime fields, using the L2 classifier provides
a large increase in performance. In these cases, precision
drops, but recall increases significantly.

Figure 2 shows results of our system on the SA task using
SSO evaluation. We compare these scores against published
results for BWI, RAPIER and LP2 which use some variant
of SSO evaluation. In this case BWI slightly outperforms
ELIE on the stime field, but ELIEL2 performs best on the
other three fields.

For all fields on this dataset, the L1 classifier has high
precision but low recall. The L2 classifier always has sig-
nificantly higher recall while maintaining high precision.In
each case recall rises with only a small drop in precision and
a higher F1 with L2 classification.

Peskin reports results for BIEN on the SA dataset of 76.9,
87.1, 96.0 and 98.8 for speaker, location, stime and etime.
These results are using repeated 80:20 test:train splits. Our
results are competitive with these (better on two fields and
slightly worse on two fields) even though we used only 50%
of the data for training. It is likely that our systems perfor-
mance would improve further if we used 80% of the dataset
for training.

Figure 3 shows the performance of ELIE on the jobs
dataset. Because many of these fields can have multiple val-
ues, we report results for ELIE using ASO evaluation. How-
ever it is likely that the other systems may have used some
form of SSO evaluation. On a majority of fields ELIE out-
performs both LP2 and RAPIER.

2These results were provided by Fabio Ciravegna.

ELIEL1 ELIEL2 LP2 Rapier
P R F1 P R F1 P R F1 P R F1

id 100 99.599.7 100 99.5 99.7 100.0100.0100.0 98.097.097.5
title 69.340.150.7 57.2 54.6 55.8 54.0 37.0 43.9 67.029.040.5

company 94.269.679.8 90.1 71.5 79.5 79.0 76.0 71.9 76.064.870.0
salary 73.952.861.4 71.5 62.1 66.3 77.0 53.0 62.8 89.254.267.4

recruiter 88.375.681.3 87.0 77.7 82.0 87.0 75.0 80.6 87.756.068.4
state 93.792.292.9 92.4 93.1 92.7 80.0 90.0 84.7 93.587.190.2
city 96.093.294.6 95.2 94.9 95.1 92.0 94.0 93.0 97.484.390.4

country 97.793.995.8 97.4 94.3 95.8 70.0 96.0 81.0 92.294.293.2
language 93.687.290.2 93.3 89.5 91.4 92.0 90.0 91.0 95.371.680.6
platform 87.164.674.1 84.8 75.5 79.8 81.0 80.0 80.5 92.259.772.5

application 85.551.263.9 81.0 61.4 69.7 86.0 72.0 78.0 87.557.469.3
area 72.529.041.4 61.8 40.3 48.7 70.0 64.0 66.9 66.631.142.4

req yearsex 89.069.077.5 80.8 79.6 80.0 79.0 61.0 68.8 80.757.567.1
desyearsex 96.570.080.8 93.1 75.4 82.9 67.0 55.0 60.4 94.681.487.5
req degree 90.265.375.0 84.8 75.0 79.0 90.0 80.0 84.7 88.075.981.5
desdegree 95.545.158.9 67.8 50.8 55.2 90.0 51.0 65.1 86.761.972.2
post date 95.299.097.0 95.2100.097.5 99.0 100.0 99.5 99.399.799.5

Table 3: Comparing ELIE to other IE systems on the Jobs
Dataset

One some of these fields, L2 provides no improvement in
performance over L1. Many of the fields in the jobs dataset
are very short (e.g. city, state, country) and simply involve
learning the token that occurs e.g. state is often ‘TX’. In
this situation there is little scope for generalization so the L1
classifier does as well as the L2 classifier.

In all cases, the L2 classifier has higher recall than the L1
classifier, and in almost all cases higher F1. Apart from the
very short fields the improvement for L2 is large.

Feature experiment
To test how each set of features contributes to performance,
we re-ran the experiment shown in Table 1 with various re-
duced sets of features.

This showed that for the location, stime and etime fields
most of the performance comes using the token features
alone. For the stime field we get F1=90.2% using all feature
but we get F1=89.1% using tokens only. Similarly, for the
etime and location fields we have 92.3% and 82.2% using
only token features. This compares with 94.6% and 85.9%
using all features. So the addition of the extra features does
not contribute much to the performance on these fields.

For the speaker field, we get F1=65.0% using only the to-
ken features, compared to 84.9% using all features. Using
the token and POS features gives F1=71.7%, using the token
and orthographic features gives 72.3%, while the token and
Gaz features gives 84%. We conclude that performance on
the speaker field is greatly enhanced by the use of a gazetteer
which can tag people’s first and last names, and also by or-
thographic and POS features.

Discussion and summary
We compared our system to three others on the SA dataset
and two others on the jobs dataset. On each dataset ELIE
performed best of all the algorithms.

On the Seminar Announcements dataset, ELIE compre-
hensively outperforms LP2, BWI and RAPIER. On the jobs
dataset it outperforms both LP2 and RAPIER on a majority
of fields. In particular, on both datasets, ELIE performs sig-
nificantly better on the fields that are longer and regarded as

more difficult.
The L2 learner consistently improves recall while keep-

ing precision high. On longer fields where the chance of
boundary imprecision is higher the improvements are gen-
erally larger. The L2 classifier always improves recall and
usually keeps precision high enough to improve F1.

An investigation of the errors that ELIE produces reveals
that most errors are false negatives. Those that are false pos-
itives are mostly of two kinds. The first are as a result of
using exact matching for evaluation, where we have tagged
one end of the field correctly but not the other. The second
occur as a result of labeling errors on the data where we ex-
tract something that should have been labeled but was not.

Conclusion
We have described an approach that treats information ex-
traction as a token classification task. Using SMO, a fast
support vector machine implementation, our ELIE system
learns a set of classifiers for information extraction that are
competitive with, and in many cases outperform, current IE
systems.

We also described convergent boundary classification: a
new way of combining classifiers for Information Extraction
that yields significant performance improvements. This ap-
proach exploits the high precision of token classifiers to in-
crease the recall of the IE system. Our system outperformed
current IE systems on two benchmark datasets. On several
fields, especially those that are longer and more difficult, it
gave large improvements in performance.

Future work
There is plenty of scope for improvement in ELIE. We plan
to analyze in detail why the L2 approach can give such dra-
matic improvements in recall, and specify precisely what
properties of the system facilitate this.

Further experiments will involve testing the system on
more datasets, testing more rigorously the influence of the
various feature-sets on performance, and a comparison of
different learning algorithms on this task independent of all
other system variables.

Other learning components may improve ELIE ’s perfor-
mance further, e.g. a component that learns to recognize and
correct prediction errors similar to LP2’s correction rules.
Another modification might add a third level classifier that
takes the predictions of L1 and L2 and classifies the ex-
tracted fragment as being correct or not.

Finally, the tag-matcher currently extracts all possible
start-end pairs that are of a length that occurred in the train-
ing corpus. This includes overlapping extractions. A more
discerning tag-matcher may perform better.

Acknowledgments This research was funded by Science
Foundation Ireland and the US Office of Naval Research.
Thanks to Fabio Ciravegna and Dayne Freitag for their feed-
back and access to their results and systems.

References
Brill, E. 1994. Some advances in transformation-based
parts of speech tagging. InAAAI.

Califf, M., and Mooney, R. 1999. Relational learning of
pattern-match rules for information extraction. InProc.
16th Nat. Conf. Artifical Intelligence.
Ciravegna, F. 2001. Adaptive information extraction from
text by rule induction and generalisation. InProc. 17th Int.
Joint Conf. Artificial Intelligence.
Freitag, D., and Kushmerick, N. 2000. Boosted wrapper
induction. InProc. 17th Nat. Conf. Artificial Intelligence.
Freitag, D. 1998.Machine Learning for Information Ex-
traction in Informal Domains. Ph.D. Dissertation, Carnegie
Mellon University.
Keerthi, S.; Shevade, S.; Bhattacharyya, C.; and Murthy,
K. 2001. Improvements to platt’s smo algorithm for svm
classifier design. InNeural Computation, volume 13:3.
Lavelli, A.; Califf, M. E.; Ciravegna, F.; Freitag, D.; Giu-
liano, C.; Kushmerick, N.; and Romano, L. 2004. A critical
survey of the methodology for ie evaluation. In4th Interna-
tional Conference on Language Resources and Evaluation.
Peshkin, L., and Pfeffer, A. 2003. Baysian information
extraction network. InProc.18th Int. Joint Conf. Artifical
Intelligence.
Platt, J. 1998. Fast training of support vector machines
using sequential minimal optimization. In Schlkopf, B.;
Burges, C.; and Smola, A., eds.,Advances in Kernel Meth-
ods - Support Vector Learning. MIT Press.
Quinlan, R. 1993.C4.5: Programs for Machine Learning.
Morgan Kaufman.
Witten, I. H., and Frank, E. 2000.Data Mining: Practical
Machine Learning Tools and Techniques with Java Imple-
mentations. Morgan Kaufmann.

